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Assessment of biodiversity patterns based on
INaturalist observation data from Carinthia

Jiping Cao, Hartwig Hochmair, Gernot Paulus, Corey T. Callaghan

ABSTRACT KEYWORDS

This study examines the spatial and temporal patterns of citizen science contributions to biodiversity
monitoring in Carinthia, Austria, utilizing iNaturalist research-grade observations collected from 2015 to 2022. ;
It investigates potential data collection biases, such as time of day and season, as well as species phenology, > seasonality
including seasonal life cycles, which manifest in temporal patterns of data contributions. Additionally, the Y land cover
study explores how land cover and other variables influence observation counts across 5 x 5 km? grid cells,
employing a negative binomial regression model with Eigenvector Spatial Filtering. The temporal analysis
also analyzes seasonal shifts in the internationality of iNaturalist contributors in Carinthia. The results reveal
significant effects of time of day, season, and land cover on observed species and biodiversity. Most taxonomic
families were primarily recorded in forested and semi-natural areas during the summer months. Although
artificial surfaces, such as urban fabric, contribute fewer observations in total, they exhibit a bias due to ease
of access and longer observation hours during winter, aided by artificial lighting. The study also highlights that
iNaturalist contributions in Carinthia during the summer months are predominantly from users who tend to
contribute more frequently outside of Austria, suggesting that the summer period attracts more internationally
active contributors, such as foreign tourists. This research expands on prior studies of biodiversity monitoring
by integrating both local and global scales of contributor behavior.

Y citizen science

> contribution bias

Bewertung von Biodiversitdtsmustern auf Basis von iNaturalist-Beobachtungen in Karnten

ZUSAMMENFASSUNG

Diese Studie untersucht die rdumlichen und zeitlichen Citizen Science Beobachtungen fiir Biodiversitdtsmoni-
toring in Kérnten, (sterreich, basierend aufiNaturalist Daten von 2015 bis 2022. Sie behandelt sowohl systema-
tische Effekte in der Datensammlung, wie z. B. Tageszeit oder Jahreszeit, als auch die Phédnologie von Pflanzen
und Tieren, wie z. B. saisonale Lebenszyklen, die sich im zeitlichen Ablauf der Beobachtungen widerspiegeln.
Dariiber hinaus untersucht sie die Beziehungen zwischen Landnutzung und den Beobachtungszahlen in einem
5 x 5 km? Raster, unter Verwendung eines negativen Binomial-Regressionsmodells mit Eigenvector Spatial
Filtering. Die zeitliche Analyse umfasst weiters saisonale Verdnderungen des globalen Beobachtungsverhal-
tens von iNaturalist-Nutzern, die in Kdrnten Beobachtungen durchgefiihrt haben. Die Ergebnisse zeigen einen
starken Einfluss von Tageszeit, Jahrenzeit und Landnutzung auf die beobachteten Arten und deren Biodiversi-
tat. Die gréBBte Biodiversitdt wurden hauptséchlich in Wald- und Wiesengebieten und wéhrend des Sommers
beobachtet. Wéhrend in absoluten Zahlen versiegelte Fldchen, so wie z. B. stiddtische Umgebungen, eine
geringere Anzahl von iNaturalist Beobachtungen als einige andere Landnutzungstypen verzeichnen, weisen
sie aufgrund der leichten Erreichbarkeit und der lingeren Beobachtungszeitrdume wéhrend des Winters (auf-
grund der kiinstlichen Beleuchtung) einen systematischen Effekt auf. iNaturalist-Beobachtungen, die in Karn-
ten wéhrend des Sommers erfasst wurden, stammen (iberwiegend von Nutzer:innen, die eher dazu tendieren,
auch auBerhalb Osterreichs Daten zu sammeln als diejenigen Nutzer, die in Kérnten wéhrend des Winters
iNaturalist-Beobachtungen erfassen. Das ldsst darauf schlieBen, dass erstere Nutzergruppe international
aktiver ist, wie z.B. auslédndische Touristen. Diese Forschungsarbeit liefert neue Einblicke im Bereich des Bio-
diversitdtsmonitoring, indem sie sowohl lokale als auch globale Ebenen des Nutzerverhaltens beriicksichtigt.

INTRODUCTION

Inrecentyears, citizen science has emerged as a powerful tool for biodiversity monitoring
and conservation efforts worldwide. Citizen science platforms have revolutionized the way
researchers collect and analyze species occurrence data, allowing for unprecedented
spatial and temporal coverage [1]. The engagement of citizens in scientific research
not only contributes to data collection, but also fosters environmental awareness and
scientific literacy among participants [2]. In addition, long-term citizen science data can
be used to observe temporal trends and changes in phenology due to climate change
and global warming [3], [4]. iNaturalist stands out as one of the largest unstructured
biodiversity citizen science survey projects globally, with over 197 million observations
of plants, animals, fungi, and other organisms worldwide as of July 2024 [5]. The platform

FULL ARTICLE https://doi.org/10.71911/cii-p3-nt-2025221



Carinthia Nature Tech (2025) | Volume 2 | Issue 2 | pages 7-26

allows users to upload an observation (e.g., photo, identification, sound) of an organism.
These observations are being used for biodiversity monitoring, species distribution
modeling, and phenological research [6]. Citizen science platforms, such as iNaturalist,
add to a range of state-of-the-art tools for biodiversity monitoring including unmanned
aerial systems technology and real-time remote sensing applications [7]. The integration
of citizen science biodiversity data with advanced spatial modeling techniques has
further enhanced our ability to analyze and interpret biodiversity patterns across various
landscapes.

Data contributed to citizen science platforms have been used to augment traditional,
structured sources of biodiversity data[3], [4]. These efforts increase the number of species
records in large geographic areas and lead to a more accurate reflection of species
composition compared to traditional scientific references [8]. However, the opportunistic
nature of biological recordings via citizen science leads to various biases, including
spatial, temporal, and taxonomic [9]. Where people live—or where they visit-could have
strong implications for the spatial locations of the data collected, and the interactions
between humans and the environment introduce complex spatial and temporal dynamics
that shape contribution patterns over time. Understanding contribution patterns to citizen
science platforms is crucial for optimizing data collection strategies and addressing
potential biases in citizen science datasets. For example, researchers might prefer to use
observations from more active users who are more likely to record an exhaustive sample
of a particular taxonomic group of interest in a specific area, excluding low-activity users
that will not heavily affect sample size [10], [11].

Studies have shown that citizen science data are often biased toward areas with higher
population density and greater accessibility [12], [13]. Road networks, in particular,
have been linked to increased contribution rates in both eBird [14] and iNaturalist [15]
datasets, as the presence of roads can increase the likelihood of chance encounters with
wildlife [16]. Proximity to roads has been identified as a strong predictor of iNaturalist
contribution abundance, often diminishing the apparent influence of elevation [15].
Collection hotspots are frequently associated with sites that organize public surveys or
are regularly visited by recording societies [9]. In addition, protected areas and parks tend
to attract more observers, likely due to their perceived biodiversity value and recreational
appeal [17]. However, the relationship between protected areas and citizen science
contributions varies across regions and taxa [13]. In some cases, remote protected
areas or those managed primarily for biodiversity conservation receive relatively few
observations despite their ecological importance, as seen in native wetlands and wet
and dry forests in Hawaii [18]. Similarly, a comparison of the proportion of pixels with
observed versus expected iNaturalist records across the conterminous U.S. revealed
a higher-than-expected number of observations in developed areas, with the opposite
pattern observed for shrublands and grasslands [10], [11]. There is growing evidence that
the type of environment, particularly the distinction between urban and rural settings,
influences observers’ behavior and engagement with biodiversity. One study found that
urban residents generally have lower species identification skills and weaker emotional
connections to nature than rural residents [19] which may (or may not) contribute to
reduced participation in citizen science biodiversity mapping. Similarly, residents living
greater than 10 km from the nearest forest patch performed worse in bird identification
tasks than those living closer [20]. A review of urban biodiversity research over the past 30
years also revealed that most studies remain spatially and temporally limited. Broader use
of citizen science and remote sensing could help overcome these limitations and close
existing knowledge gaps in urban biodiversity research [21].
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Temporal patterns in iNaturalist contributions indicate that user activity peaks globally
between May and September, with additional spikes during organized events such as
the City Nature Challenge in late April and various bioblitzes [10], [11]. Contributions are
also generally higher on weekends compared with weekdays. Similar patterns have been
observed in other biodiversity-focused citizen science platforms, such as Artportalen,
alongside long-term trends and weather-related effects [22].

Daily and seasonal cycles further shape temporal observation patterns, as they are closely
linked both to human activity, such as the preference for data collection on weekends
[23], and to phenology, that is, the timing of biological events in plants and animals [24].
Examining the seasonality and hourly distribution of observations in conjunction with
environmental factors, such as land cover, can provide valuable insights into these
temporal patterns and their associated biases, for example, longer daily observation
windows in urban areas due to artificial lighting. Temporal analysis can also reveal
unusual phenological events, such as regional flowering peaks, or highlight biases, such
as the tendency to record plants during their flowering phase [25]. Furthermore, multi-
year analyses of citizen science data aimed at detecting phenological shifts over time
must account for systematic effects. For instance, a recurring sampling date, such as the
first Saturday in June, shifts one day earlier each year and resets approximately every
seven years [23].

In addition to spatial and temporal biases, citizen science datasets are also subject
to taxonomic biases, meaning that some species are over- or under-represented. For
instance, a comparison between collections-based bee biodiversity monitoring and
research-grade iNaturalist observations showed that a small group of well-trained
participants systematically collecting bees documented biodiversity more effectively
than thousands of individual iNaturalist contributors [26]. On iNaturalist, the basic unit of
data is the verifiable observation, which includes a date, georeference, photos or sounds,
and excludes captive or cultivated organisms. Observations achieve research-grade
status when at least two-thirds of community identifiers agree on a species-level or lower
identification. Analyses of bird observations on iNaturalist indicate that large-bodied
species, common species, and those occurring in large flocks tend to be over-represented
[27]. Users also often specialize in particular taxa, such as plants or insects, rarely submit
repeat observations of the same species, and tend to record species common in human-
influenced areas, such as monarch butterflies or mallards [10]. Conversely, species that
are often hidden, highly mobile, evasive, or difficult to photograph without specialized
equipment are typically undersampled [28], [29]. Socio-economic constraints and health
limitations, such as those affecting older individuals, have also been identified as barriers
to participation in conservation-related citizen science activities [30]. To address such
sampling biases in species distribution models, corrective methods including spatial
filtering and background sampling techniques have been developed [31].

Participants in biodiversity projects tend to prefer areas with higher species richness
and greater taxonomic diversity [32]. Consequently, seasonal variation in observable
biodiversity may influence travel patterns, such as the distance traveled to observation
sites for participation in citizen science projects. While other georeferenced crowd-
sourced data, such as tweets [33], have been used to study global mobility patterns, they
lack the biodiversity context that platforms like iNaturalist provide. Analyzing iNaturalist
data enables researchers not only to track user movements but also to understand the
motivations behind these movements in the context of nature observation. Only a few
previous studies have addressed this research gap. For example, an analysis of iNaturalist
observations in Hawaii indicated that most contributors were likely visitors [18] while
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another study found that average travel distances to parks were greater for certain park
management types, such as National or State Parks, compared with city or county parks
[34].

This study aims to analyze the contribution patterns to iNaturalist, using Carinthia as a
case study. As an Alpine region, Carinthia offers diverse opportunities for citizen science
engagement due to its rich biodiversity, sensitive ecosystems [35], [36], and distinct winter
and summer seasons [37]. Accordingly, the study provides insights into local contribution
characteristics for this specific Alpine region, in line with previous local studies that
have, for example, identified urban biodiversity hotspots [38]. Using a range of analytical
approaches, the study addressesthe following objectives: (1) Identify the key environmental
factors associated with the spatial distribution of iNaturalist research-grade contributions
in Carinthia, and (2) examine hourly and seasonal contribution patterns, including the
distribution of contributions across species and taxonomic kingdoms, the influence of
land cover on user contributions, and the effect of seasonality on the share of domestic
versus international data collection efforts by iNaturalist contributors in Carinthia.

METHODS

Data

iNaturalist observations

Research-gradeiNaturalistdatawere obtained through the Global Biodiversity Information
Facility (GBIF) website [39] in CSV format. GBIF provides access to biodiversity data from
numerous sources, either by hosting datasets directly or by indexing those maintained
by external providers. Among the citizen science contributions for Carinthia available
through GBIF during the 2015-2022 study period, iNaturalist ranked fourth, accounting
for 15.8% (31,974) of all GBIF records (202,368). Other major contributors include
the Biodiversitatsdatenbank Nationalpark Hohe Tauern (17.7%, 35,819 records), the
Biodiversitatsdatenbank Salzburg (17.0%, 34,492 records), and Pl@ntNet (16.4%, 33,089
records). Because users may contribute to multiple citizen science platforms—sometimes
under different usernames—combining datasets could lead to duplicate observations.
Moreover, some platforms focus on specific taxonomic groups. For example, Pl@ntNet
primarily targets plants. To ensure taxonomic breadth and maintain consistency while
avoiding potential double counting, this study limits its analysis to a single comprehensive
source of citizen science data, iNaturalist.

The downloaded iNaturalist research-grade data included georeferenced coordinates,
timestamps, species identification, anonymized observer IDs, taxonomic information,
observation quality, and URLs to associated photographic evidence. These data were
stored in a PostgreSQL database for further analysis, with observations from January 1,
2015, to January 1, 2023, considered. Because observations initially marked as “Needs
ID” require time for verification and potential upgrading to research-grade status, we
focused on the time period of 2015-2022 to ensure the use of stabilized annual datasets
that had sufficient time for community validation. Research-grade observations are
particularly valuable for scientific research, as they provide reliable species occurrence
data at a scale previously unattainable through traditional methods [40].

Other geospatial data

The following data were used in either spatial regression or temporal analysis. Road
polyline data were obtained from the Carinthia Transportation Department through
Carinthia University of Applied Sciences. This dataset distinguishes between 12 road
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classes, which were divided into those with and without car access, followed by the
computation of the total length of vehicular and pedestrian-only accessible roads within
each 5x5km?grid cell. Next, OpenStreetMap (0SM) road data were downloaded (https://
download.geofabrik.de/europe/austria.html), and the direct distance of a grid cell to the
nearest 0SM primary road was computed. A land cover vector dataset was extracted
from the CORINE Land Cover (CLC) 2018 version which was obtained from the Copernicus
Land Monitoring Service (https://land.copernicus.eu/en/products/corine-land-cover). It
comes with a minimum mapping unit of 25 ha at a scale of 1:100,000. The CLC nomenclature
includes 44 land cover types, organized hierarchically in three levels. For this study, the
first-level classification with five categories including artificial surfaces, agricultural
areas, forest and semi-natural areas, wetlands, and water bodies (Figure 1) was used
for regression, whereas the second-level classification with 12 categories was used
for charting temporal contribution patterns. Artificial surfaces comprise continuous
and discontinuous urban fabric, industrial and transport units, as well as artificial, non-
agricultural vegetated areas, such as parks and sport facilities.

Figure 1: First-level
classification of
CORINE land cover,
protected areas and
cities/towns in Carinthia

I:l Agricultural area
[ Artificial surface
[ | Forest and semi natural area
- Water body
S Wetland
@ City
[ Natural protected area

Shapefiles delineating protected areas in Carinthia (see Figure 1) were obtained from
multiple sources, including the Austrian Federal Ministry for Climate Action, Environment,
Energy, Mobility, Innovation and Technology. This national-scale dataset served as the
foundation for extracting protected areas specific to Carinthia. Additional data were
manually sourced from regional environmental authorities in Carinthia, leading to 687
protected areas intersecting with Carinthia and covering 837 km?.

A 10 x 10 km? elevation raster was obtained from the Austrian Open Government Data
portal, and its mean elevation and slope were resampled to the 5 x 5 km? analysis grid.
The locations of the ten largest cities and towns in Carinthia as of 2020 (see Figure 1)
were obtained from the Federal Statistical Office of Austria (“Statistics Austria”), with
population sizes ranging from approximately 9000 to 102,000 residents. For the regression
analysis, the distances between each grid cell and the nearest city (town) and protected
area, respectively, were computed.

Modeling spatial contribution patterns

A negative binomial regression model was developed to predict the number of
observations per nominal 5 x 5 km? grid cell where the size of grid cells is smaller along
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the boundary of the study area. Published literature provides several suggestions for the
grid size to be used for quadrant count analysis. One method, for example, considers
study area size and number of events, which gives a recommended grid size of 2 x 2 km?
for our dataset [41]. However, this grid size results in numerous empty cells, poor model fit
of the negative binomial regression, and only a few significant coefficients. It also leads
to excessive computation time when incorporating Eigenvector Spatial Filtering (ESF).
Therefore, the 5 x 5 km? grid struck an optimal balance between preservation of spatial
details in contribution patterns and computational efficiency.

Besides grid size, contribution counts per cell were also considered in data preparation.
Counting observations in the 5 x 5 km? grid raster revealed that some “super users”
had contributed disproportionately large numbers of observations (several thousands)
concentrated within local areas, which could not be explained by environmental variables.
These isolated contribution hotspots could not be predicted through regression analysis
and were therefore mitigated as follows to avoid biased model results. Within each grid
cell, the number of contributions per unique user were computed. These values were
then sorted across all grids. The 95" percentile was set as a threshold that was then
applied to each grid cell, capping the maximum number of observations any single user
could contribute to any cell. Capping contributions from super users is a common practice
when modeling activity rates from crowd-sourced data. For example, this can be done by
retaining only one record when multiple images are taken within the same minute or by
excluding photos with identical coordinates and owner IDs, as applied in Flickr datasets
[42], [43].

Candidate predictors, computed for each grid cell, included mean elevation, slope,
supply of pedestrian-only and car-accessible roads, distance to nearest city and nearest
protected area, and proportion of the first four land cover types shown in Figure 1, with
wetland as the default land cover category. The land cover-related variables underwent
a logarithmic transformation to remove non-normality. In addition, the model included an
offset term (log of cell size in km?) to account for the varying size of grid cells in which
iNaturalist observations were taken. To address spatial autocorrelation among regression
residuals, ESF was employed [44], using the R packages spdep and sf.

The negative binomial regression model, incorporating land cover and other predictor
variables as well as spatial eigenvectors (EVs), can be expressed as:

log(A) = B+ B, X, + B X, +...+ B X +offset(log(area)) + y,EV, +...+y EV_+e (1)

where )\ is the expected count of observations, X ..X are the predictor variables, EV....
EV_are EVs, indexed p and y symbols represent coefficients for predictor variables and
eigenvectors, respectively, which are to be estimated, and ¢ is the error term.

To construct the final negative binomial regression with selected eigenvectors, a forward
stepwise selection procedure was implemented based on the Akaike Information Criterion
(AIC), which balances model fit and complexity. Variables with a Variance Inflation Factor
(VIF) > 5 were flagged for potential removal due to multicollinearity among predictors.
Spatial autocorrelation in model residuals was evaluated using Moran’s |, and McFadden's
R-squared was calculated to assess overall model fit.

Seasonal and daily variations in observation patterns

The temporal analysis examined changes in contribution patterns, including data
abundance, number of taxa and users, proportion of taxonomic groups, and most
frequently observed species, (1) across the four seasons; and (2) throughoutthe day. Some
analyses were performed separately for different land cover types. For both seasonal
and hourly analyses, abundance and taxonomic composition were aggregated from
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multi-year data (2015-2022) into four seasonal periods and 24-hour intervals, respectively.
Additional descriptive statistics, such as the number of hours per day accounting for 90%
of observations for each land cover type and season, were calculated to provide further
insight into temporal variation in data abundance across different land cover types.
Seasons were defined as spring (March through May), summer (June through August),
fall (September through November), and winter (December through February). Chi-square
tests were performed on different types of hourly and seasonal contribution data to identify
the statistical significance of hourly or seasonal changes in the proportion of contribution
to different kingdoms, taxonomic categories, and land cover types, respectively. A small
number of observations, i.e., 50 in spring, 557 in summer, 56 in fall, and 15 in winter, with a
timestamp of exactly “00:00:00” were excluded from all hourly-related analyses, because
they lacked actual timestamp information.

Taxonomic variety in observation patterns

Related analyses report the number of unique families and genera across different land
cover types and seasons. Finally, comparisons of the three most frequently observed
species for each land cover type and season illustrate the phenological patterns of
recorded species throughout the year.

RESULTS

Spatial contribution patterns

Table 1:

Significant predictors

Variable Estimate IRR p-value for iNaturalist
(Intercept) 1472 4358  <0.001 Jeeratonsn
LC proportion: Artificial surface (log) 0.226 1.253 <0.001
LC proportion: Forest and semi-natural area (log) -0.737 0.479 <0.001
LC proportion: Water body (log) 0.130 1.138 <0.001
LC proportion: Agriculture (log) -0.218 0.804 <0.001
Nearest distance to city [km] -0.212 0.809 <0.001
Nearest distance to primary road [km] -0.136 0.873 <0.05
EV2 -3.032 0.048 <0.001
EV4 5.490 242.138 <0.001
EV5 -2.816 0.060 <0.001
EV6 -2.553 0.078 <0.001
EV7 4.047 57.226 <0.001
EV9 -4.339 0.013 <0.001
EV10 -4.382 0.013 <0.001
EV14 -3.745 0.024 <0.001
EV15 -3.763 0.023 <0.001
EV16 3.970 53.000 <0.05
EV17 2.105 8.207 <0.001
Other 53 selected Eigenvectors
Number of observations 456
Moran’s | of residuals 0.005 0.377
McFadden’s R-squared 0.12

McFadden’s adjusted R-squared 0.10
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Regression analysis

The final model (Table 1) shows significant predictors after removal of predictors due
to multicollinearity and only a subset of significant coefficients associated with EVs for
conciseness. MostEVsincluded in the model exhibit VIF values close to 1, underlining their
effectiveness in capturing spatial autocorrelation without introducing multicollinearity.
The residuals from the model without EVs demonstrated significant spatial autocorrelation
(Moran's | = 0.198, p < 0.0001) which was mitigated after incorporating EVs (Moran’s | =
0.005, p = 0.377). Elevation and the distance to protected areas were non-significant. The
contribution densities in forested areas, artificial surfaces, and protected areas are 1.85
points/km?, 11.34 points/km?, and 4.25 points/km? respectively. This suggests that protected
areas may function as transitional zones between artificial surfaces and forested land
cover types, exhibiting neither particularly high nor low contribution densities, which
likely renders this variable non-significant.

The model results indicate that the proportion of artificial surfaces and water bodies are
positively associated with iNaturalist observations, while the proportion of forested areas
and agricultural lands in a 5 x 5 km? cell shows negative associations. Proximity to cities
and primary roads is linked to increased observation counts. Since the link function of a
negative binomial model is the natural log, the interpretation of regression coefficients
(e.g., B,), is that each one-unit increase in the mean of a predictor (e.g., X1) increases
the mean number of observations contributed to a 5 x 5 km? cell by a multiplication
factor exp(p,), which gives the incidence rate ratio (IRR). For example, using the mean of
18.585 km for the “nearest distance to city” predictor across all cells, an increase of the
distance by 1 km results in an IRR of e%2'2=0.809 and will lead, on average to a decline of
(1-0.809) = 19.1% of observations in a cell. The effect sizes of the model variables with their
95% confidence intervals are expressed as IRR in Figure 2 (intercept and eigenvectors
excluded), revealing the largest effect of log-transformed forest and semi-natural areas
among significant predictors.

Artificial surface ‘: 23!
0 Water body *: g
g Nearest distance to primary road I—'—i:
g Nearest distance to city F—— 1:
Agriculture area ke i
Forestand semi-natural area ~— FH—+— :
0.5 1.|0 3.0 5.0
Incidence rate ratio
 Fig.2 |

Contributions to land cover types

Users who contributed at least one iNaturalist observation in Carinthia during summer
between 2015 and 2022 added observations to 2.78 CORINE land cover types (level 2,
12 types) on average (median: 2, maximum: 11). The right-tailed distribution (Figure 3a)
and the log-log plot (Figure 3b) indicate that most users concentrated their observations
on a few land cover types and that the number of contributors exhibited a power law
relationship with the number of land cover types contributed to (R2 = 0.919).

Figure 2:
Effect size of
predictor variables
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Temporal contribution patterns

Seasonality of contributing individuals

Of the 825 iNaturalist users who contributed iNaturalist observations in Carinthia between
2015 and 2022, 68.3% contributed data in only a single season, 18.1% in two seasons, 6.9%
in three seasons, and 6.7% in all four seasons (in any year). The first group represents
typical seasonal visitors and one-time contributors, where the last group represents
committed and probably local contributors taking observations throughout the year.

Contributions to biodiversity across days and seasons

The proportion of contributions to different kingdoms varies by hour and season (Figure 4).
At the 12 pm peak in summer, Animalia comprises 45.4% of contributions, Plantae 51.8%,
and Fungi 2.7%, whereas in fall the proportion of Animalia (63.1%) and Fungi (16.3%)
increases but drops for Plantae (20.6%). Kingdom Animalia generally dominates the daily
tails of early morning and late evening hours across seasons, often reaching 90-100% of
observations, possibly due to nocturnal animal activity. Protozoa and Bacteria appear
only sporadically in small numbers, e.g., with 1 observation for Protozoa between 8:00-9:00
in summer and 1 observation between 11:00-12:00 in fall, and 1 observation for Bacteria
between 10:00-11:00 in both summer and fall. Summer exhibits the highest overall activity
with a maximum of about 250 unique users contributing around 2000 observations per
hour around noon, whereas winter is the opposite with a maximum of about 40 unique
users contributing around 120 observations per hour around noon.
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Figure 3:

Distribution of land
cover types contributed
to expressed as
histogram (a) and
log-log plot (b)

Figure 4:

Hourly distribution of
kingdoms by season
in Carinthia
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Results of chi-square tests based on number of observations in Figure 4 show that
the change in the hourly proportion of observations falling into different kingdoms is
statistically significant for spring (X2 = 2127.01, df = 23, p < 0.001), summer (X2 = 7336.29,
df = 23, p < 0.001), fall (X2=2019.01, df = 23, p < 0.001), and winter (X2 = 603.08, df =23, p <
0.001). The proportions of kingdoms also vary significantly between seasons. For instance,
Plantae dominates in spring (51.7%) and summer (51.8%), while Animalia is more prevalent
in fall (63.1%) and winter (56.1%).

Seasonality of contribution patterns across land cover types

Table 2 lists the three most frequently observed species in four land cover types across
four seasons. Some apparent patterns emerge, such as the predominance of butterfly
and other insect observations during summer and fall for agricultural areas, followed by
a shift toward more observations of birds during winter. This pattern aligns with natural
phenological changes and shifts in species visibility [25], [45]. Artificial surfaces show a
mix of urban-adapted species, with birds and insects dominating. Forest and semi-natural
areas display high biodiversity, featuring a variety of plants, insects, and amphibians, with
notable seasonal shifts from spring flowers to summer butterflies and fungi (fly agaric) in
fall. Water bodies demonstrate a clear focus on aquatic species observed in summer, and
birds during the remaining seasons. Each land cover type reflects its unique ecological
characteristics, with seasonal variations in the most frequently observed species,
highlighting the diverse habitats and seasonal dynamics of the region. The wetland habitat
land cover type was excluded due to its limited number of recorded species.

Season

Artificial surfaces Forest and semi natural areas Agricultural areas Water bodies

Eurasian coot

Fulica atra (4)

great crested grebe
Podiceps cristatus (4)

spring W common blackbird
Turdus merula (15)

white butterbur
Petasites albus (24)
common wall lizard
Podarcis muralis (21)
coltsfoot

Tussilago farfara (20)

common bugle
Ajuga reptans (12)
common bugle

Ajuga reptans (14)
greater celandine
Chelidonium majus (14)

meadow clary
Salvia pratensis (12)
sedge warbler

Acrocephalus schoenobaenus (3)

fumewort

Corydalis solida (11)
Summer Wels catfish

Silurus glanis (245)
European perch
Perca fluviatilis (35)
pumpkinseed

silver-washed fritillary
Argynnis paphia (102)
heath spotted orchid
Dactylorhiza maculata (86)

silver-washed fritillary
Argynnis paphia (35)
meadow brown
Maniola jurtina (33)
European peacock

Japanese oak silk moth
Antheraea yamamai (22)
Himalayan balsam
Impatiens glandulifera (18)
silver-washed fritillary

Ve e rry

common frog

Argynnis paphia (16) Rana temporaria (55) Aglais io (29) Lepomis gibbosus (25)
Fall western conifer seed bug * fly agaric western conifer seed bug y mute swan
Leptoglossus occidentalis (48) Amanita muscaria (23) Leptoglossus occidentalis (31) Cygnus olor (13)
r fire salamander European peacock mallard

Asian lady beetle
Anas platyrhynchos (8)

Aglais io (16)
Asian lady beetle
Harmonia axyridis (16)

W Eurasian blue tit L =

Cyanistes caeruleus (10)

Salamandra salamandra (22)
LN Alpine chough
Pyrrhocorax graculus (16)

Harmonia axyridis (31)
; common blackbird
Turdus merula (16)
Winter ‘ common blackbird 4
Turdus merula (15)
W greattit

Parus major (11)

common darter
Sympetrum striolatum (7)

mallard

Anas platyrhynchos (9)
Eurasian coot

Fulica atra (9)

. Eurasian beaver

Castor fiber (6)

European beech
Fagus sylvatica (12)
Norway spruce
Picea abies (8)
common hazel
Corylus avellana (7)

common blackbird
Turdus merula (10)
common chaffinch
Fringilla coelebs (8)

¥ daddy long-legs spider %
Pholcus phalangioides (10)

Legend: LS bird butterfly flowering plant & tree » fish & amphibian 7 reptile * fungus * arachnid D mammal
Silhouettes sourced from PhyloPic (https://www.phylopic.org), all public domain (CCO).

other insect

Table 3 presents the typical daily observation window lengths, showing the number of
hours per day that account for 90% of observations across different land cover types
and seasons. The data indicate that summer generally provides the longest observation
windows for iNaturalist data collection, with the exception of water bodies, which exhibit
slight deviations. In winter, the longest observation window (11 hours) occurs on artificial
surfaces, likely due to the influence of artificial lighting. In contrast, during summer, the
longestobservation windowis observedin agricultural areas (17 hours), possibly attributed
to minimal canopy cover and fewer obstructions to sunlight, resulting in extended natural
daylight.

Table 2:

Top three observed
species in four land
cover types across four
seasons
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Forest and semi

Season Artificial surfaces
natural areas

Agricultural areas  Water bodies ~ Wetlands

Spring 11.00 10.00 13.55 12.05 11.00
Summer 15.00 16.00 17.00 11.00 12.00

Fall 14.00 8.00 11.00 11.80 8.00
Winter 11.00 8.00 8.35 9.00 5.00

The number of observations across the five land cover types by hour of the day and
season are plotted in Figure 5 and summarized in Table 4. The relative abundance of
contributions is highest in forest and semi-natural areas during spring (44.3%), summer
(57.5%), and fall (36.7%), which also correspond to the highest biodiversity levels among
all land cover types in these seasons (Figure 6). In winter, agricultural surfaces show the
highest relative abundance of contributions (35.4%) and the greatest biodiversity for that
season (see Figure 6). The proportion of contributions from artificial surfaces is lowest
in summer (13.5%), suggesting that observers spend more time exploring natural areas
outside of urban environments during this period. A chi-square test of independence
indicates that the distribution of observations across different land cover types varies
between seasons (X2 = 1349.86, df = 12, p < 0.0001). Furthermore, the proportion of
contributions to different land cover types varies significantly by hour of day for spring
(X2 =898.46, df = 4, p < 0.001), summer (X2 = 1886.91, df = 4, p < 0.001), fall (X2 = 1263.45,
df =4, p<0.001), and winter (X2 =494.37, df = 4, p < 0.001).
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Table 3:

90% observation hour
ranges across seasons
and land cover types

Figure 5:

Hourly contribution
numbers for different
land cover types across
four seasons
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Land cover type Spring Summer Fall Winter
Agricultural surface 1270 (31.3%)  3772(22.0%)  939(27.1%) 314 (35.4%)
Forest and semi natural area 1798 (44.3%) 9830 (57.5%)  1272(36.7%)  216(24.4%)
Artificial surface 848 (20.9%) 2308 (13.5%) 1081 (31.2%) 264 (29.8%)
Water body 94 (2.3%) 874 (5.1%) 123 (3.6%) 81(9.1%)
Wetland 45 (1.1%) 325 (1.9%) 47 (1.4%) 11(1.2%)

2001 Land cover type

© —e— Artificial surface
x .
I —e— Forest and semi natural area
%300_ —e— Agricultural area
% —e— \Water
o —e— Wetland
&
= 200
3
G
3
c 1001
3
=

0,

Spring Summer Fall Winter
Season

Taxonomic variety of contributions

The number of contributed family-level taxa across land cover types for all four seasons
is illustrated in Figure 6. Forest and semi-natural areas exhibited the highest taxonomic
diversity in spring, summer, and fall, while agricultural areas showed the greatest diversity
in winter. Across all land cover types, taxonomic diversity peaked in summer and reached
its lowest levels in winter.

Global visitation patterns of iNaturalist contributors

For this analysis, we identified iNaturalist users who contributed at least once during
winter or summer in Carinthia between 2015 and 2022, and retrieved the total number of
countries they contributed to during this period (Figure 7). Users contributing in summer
(mean = 4.29, median = 3) were active in a greater number of countries than those
contributing in winter (mean = 3.57, median = 1). This indicates that winter contributors
were more likely to be local, whereas summer contributors tended to be visitors who also
submitted observations from other countries. During summer, which showed the highest
level of international participation, the top three countries of contribution following Austria
were Germany (230 users), Italy (194 users), and Croatia (121 users). In contrast, winter
observations reflected lower international involvement, with most non-Austrian users
originating from Germany (113 users), Italy (42 users), and the United States (39 users).

Figure 8 offers a complementary perspective on the international activity of iNaturalist
users who contributed at least once to Carinthian observations. It displays the proportion
of observations made in Austria relative to total user contributions, separated by season

Table 4: Number and per-
centage of observations
falling into five different
land cover types for four
seasons (numbers in
bold indicate land cover
with highest proportion
of contributions)

Figure 6:

Number of different
family taxa observed
across four seasons
and five land cover

types
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and summarized over the study period. During summer, a substantial share of users
(54.1%) recorded 90% or fewer of their observations in Austria, followed by spring (40.1%),
indicating higher international mobility among contributors, likely reflecting visiting or
traveling users. In contrast, the distributions for fall and winter suggest predominantly
local (Austrian) contributors, with few users submitting observations from outside of

Austria.
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Figure 7:

Distribution of

visited countries and
corresponding log-log
plots in winter (a)

and summer (b)

Figure 8:

Distribution of users
contributing different
proportions of
observations to Austria
by season
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DISCUSSION

Land use cover and observation patterns

Although urban environments generally support fewer native plant and animal species
[46], our results show a positive association between artificial surface land cover and
observation density. This pattern reflects user contribution bias and supports previous
findings that cities act as hotspots for biodiversity monitoring [47]. Some insect species
frequently enter buildings during colder months, increasing their visibility to observers and
leading to an overrepresentation of records from artificial surfaces [48]. Consequently,
such observations may misrepresent the true outdoor distribution of these species. For
example, in our dataset, 67.6% of annual observations of the Western conifer seed bug
and the Asian lady beetle on artificial surfaces occurred in October and November alone,
making them the most frequently recorded species in fall (compare Table 2). iNaturalist
records lack an explicit indicator denoting whether an observation was made indoors,
which constrains the ability to evaluate potential overrepresentation arising from insects
that have entered buildings. Nonetheless, the iNaturalist Never Home Alone: The Wild
Life of Homes project (https://www.inaturalist.org/projects/never-home-alone-the-wild-
life-of-homes) provides relevant contextual information regarding data collection within
indoor environments. As of September 2025, it had accumulated over 67,000 observations
of more than 8,200 species worldwide, a negligible fraction compared to the hundreds of
millions of total iNaturalist records. This pattern suggests that indoor observations are
unlikely to introduce substantial bias.

Although not examined in this study, previous research found that the spatial bias of
species occurrence records across multiple biodiversity databases has changed over
time, varying among land use categories. Specifically, site visitation probability derived
from crowd-sourced datasets increased more strongly in urban areas than in other land
use types [49]. Therefore, when estimating long-term trends in species distributions from
crowd-sourced data, analyses should account for temporal changes in spatial sampling
bias.

The overall positive association of iNaturalist observations with water bodies observed
in our study likely reflects both the ecological appeal of these habitats to wildlife and the
attraction they hold for nature enthusiasts and the general public for recreational activities
[50], which canleadto oversampling of freshwater organisms [51]. Individual user behavior
can further amplify this observation bias. A striking example in our dataset s a single user
who recorded 245 observations of Wels catfish in 2022, primarily using an underwater
camera while diving at Millstdtter See, making this species the most frequently observed
in water bodies during summer (see Table 2). This user alone accounted for 82.5% of
all fish records, demonstrating how specialized activities, such as diving or boating,
can disproportionately influence species representation in certain environments. The
behavior of “super users,” who contribute exceptionally large numbers of observations,
deviates from typical patterns linked to land cover or time of day, representing an outlier-
driven user contribution bias that is distinct from other forms of sampling bias.

The negative relationship between iNaturalist contribution numbers and forested, semi-
natural, and agricultural areas reflects the challenges of accessing remote locations,
the additional time required to travel from urban centers, and the comparatively lower
biodiversity of intensively farmed landscapes in Austria [52]. This insight highlights
opportunities for education and outreach, suggesting that targeted initiatives could
promote iNaturalist usage in agricultural and forested areas, thereby improving the
spatial coverage of observations and providing a more comprehensive picture of

20



Carinthia Nature Tech (2025) | Volume 2 | Issue 2 | pages 7-26

Carinthian biodiversity. Previous studies have shown that iNaturalist observations tend
to cluster around tourist hotspots, particularly ecotourism sites rather than cultural sites
[53], indicating that visits to cultural locations are generally less motivated by species
observation than visits to natural sites. While the current study focused on the role of
land cover types for biodiversity mapping, future work could analyze the role of different
types of tourist and recreational sites for iNaturalist contribution behavior in Carinthia
and explore its relationship with either official visitation counts or review counts from
different online platforms, such as TripAdvisor, Yelp, or Google [54]. This could help to
further disentangle the joint effect of phenology and user contribution bias in observed
contribution patterns. Our dataset did not reveal a significant association between
protected areas and iNaturalist mapping activities, representing a middle ground between
previously reported patterns of either oversampling or undersampling in protected areas,
which often vary depending on their location [55].

Temporal observation patterns

The temporal patterns in iNaturalist contributions show substantial seasonal and daily
variation, influenced both by plant and animal phenology, as well as by observer schedules
and daylight availability. Reduced activity in winter is expected due to shorter daylight
hours, difficulties in spotting and photographing organisms under low-light conditions, and
the decreased activity of many species, such as insects, small mammals, amphibians, and
reptiles, which may hibernate [56], [57]. Previous studies reported strong seasonal trends in
freshwater fish observations, with higher counts in summer as fish retreat to deeper waters
during winter [58], consistent with the summer peak in fish observations seen in our dataset.
Similarly, the autumn peak in fungal observations aligns partially with the fruiting season of
edible mushrooms in Austria, which occurs in late summer and fall [59]. The low number
of observations for Protozoa and Bacteria highlights the limitations of citizen science in
capturing microscopic life forms [60], with records appearing only sporadically in summer
and fall.

Our analysis reveals seasonal shifts in contribution bias, as measured by the distance
between observation sites and the nearest city, with the magnitude of these changes
varying by land cover type. For instance, the median distance for observations in forest and
semi-natural areas increases from 14.3 km in winter to 18.9 km in summer, a rise of about
32%, whereas for artificial surfaces the increase is more pronounced, from 4.7 km to 8.9 km,
or roughly 89%. This pattern indicates that the typical urban-centric overrepresentation is
partially alleviated in summer, when human activities extend further into areas away from
large urban settlements. Consequently, summer provides a more balanced and less biased
dataset compared to winter.

The hourly distribution of user activity across seasons reveals a clear pattern of daytime-
focused observations, with peak activity around 12:00 pm in summer, shifting to 1:00 pm in
winter (see Figure 4). Similarly, analysis of eBird data [61] demonstrated that observation
times closely track daylight hours across seasons. Previous research has also examined
additional factors influencing observation bias, such as weekday, temperature, and
precipitation. For example, one study assessed these effects using several tree species in
the Iberian Peninsula, which retain a consistent appearance throughout the year [62]. While
a similar approach could be applied in Carinthia, stronger seasonal variation in this region
makes identifying species with year-round consistent appearance more challenging.

Limitations

Observations recorded exactly at midnight were excluded from the temporal analysis,
as they likely represent data artifacts. Similar patterns have been noted in analyses of

21



Carinthia Nature Tech (2025) | Volume 2 | Issue 2 | pages 7-26

eBird data, where default timestamps (12:00 a.m.) led to an overrepresentation of midnight
observations [23]. A comparable data artifact, though occurring in the spatial domain,
arises when latitude and longitude values are missing from point records, resulting in the
appearance of a fictional “Null Island” located at 0° latitude and 0° longitude in the WGS
84 geographic coordinate system [63].

The identification of highly active contributors (“super users”) led us to exclude some of
their observation data from the spatial regression analysis, as their excessive numbers
of contributions were unlikely to be explained by environmental factors and were more
plausibly driven by personal motivations. Some super users may seek recognition by
uploading numerous photos of the same individual organism each day, without an
apparent intent to add genuine scientific value to the iNaturalist dataset. Others are
(semi)professionals, such as members of local societies or participants in organized
events like the City Nature Challenge or bioblitzes, who use the platform to document
and manage their field data over multiple years. Their contributions often hold substantial
scientific value, which can also result in repeated observations of the same species
across time [10]. An examination of the top ten users in our dataset indeed reveals distinct
contribution patterns. Some focus on a few taxa (for example, monitoring Lepidoptera or
fungi at a single site throughout the year), whereas others document a broad range of
species across many taxa and locations. Although both groups generate large volumes of
data, the scientific value of their contributions cannot easily be inferred from their activity
patterns alone. Regardless of motivation, including all data from these super users in the
spatial regression analysis would give disproportionate influence to a small subset of
individuals, potentially biasing the results. Their contributions, however, remain included
in descriptive analyses to reflect the full spectrum of citizen science participation. Finally,
examining anomalous activity patterns among individuals may still yield valuable insights
into atypical participation behaviors among iNaturalist super users [64].

Land cover analyses relied on first- and second-level CORINE classifications derived
from satellite imagery. While widely used, this approach can mask local conditions and
functional differences within classes. For example, monoculture spruce plantations are
typically classified as “forest and semi-natural areas,” although their ecological and
functional characteristics more closely resemble agricultural land. Similarly, the second-
level “pasture” class may encompass both species-rich meadows and intensively
managed grasslands for cattle, the latter being more akin to “heterogeneous agricultural
areas.” These limitations are inherent to the CORINE dataset but could be partially
addressed by incorporating local land use data where available.

CONCLUSIONS AND FUTURE WORK

The analysis of iNaturalist data in Carinthia reveals several notable spatial and temporal
patterns in data contributions. Some of these patterns likely reflect genuine ecological
and phenological variation, such as fungi being most frequently observed in forest areas
during the fall. Other patterns, however, may result from imbalanced sampling effort,
including the overrepresentation of observations in densely populated areas. This study
highlights user contribution biases that have received little attention in previous research,
such as the influence of “super users” and the interaction of seasonality with proximity
to cities and land use type. Future initiatives should aim to address spatial and temporal
gaps in data collection to provide a more comprehensive and representative picture of
Carinthian biodiversity [65]. To further investigate the complex relationships between
environment and observation patterns, future research should apply additional analytical
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approaches. Machine learning methods, such as random forests or gradient boosting,
could help capture non-linear relationships and interactions among variables. Time
series analyses would allow deeper exploration of temporal trends and seasonal effects.
Furthermore, integrating data from multiple citizen science platforms or online review
sources, and comparing these with professional biodiversity surveys, could provide a
more comprehensive understanding of Carinthia’s biodiversity and help identify priority
areas for targeted citizen science efforts [60].
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