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ABSTRACT

This study examines the spatial and temporal patterns of citizen science contributions to biodiversity 
monitoring in Carinthia, Austria, utilizing iNaturalist research-grade observations collected from 2015 to 2022. 
It investigates potential data collection biases, such as time of day and season, as well as species phenology, 
including seasonal life cycles, which manifest in temporal patterns of data contributions. Additionally, the 
study explores how land cover and other variables influence observation counts across 5 × 5 km² grid cells, 
employing a negative binomial regression model with Eigenvector Spatial Filtering. The temporal analysis 
also analyzes seasonal shifts in the internationality of iNaturalist contributors in Carinthia. The results reveal 
significant effects of time of day, season, and land cover on observed species and biodiversity. Most taxonomic 
families were primarily recorded in forested and semi-natural areas during the summer months. Although 
artificial surfaces, such as urban fabric, contribute fewer observations in total, they exhibit a bias due to ease 
of access and longer observation hours during winter, aided by artificial lighting. The study also highlights that 
iNaturalist contributions in Carinthia during the summer months are predominantly from users who tend to 
contribute more frequently outside of Austria, suggesting that the summer period attracts more internationally 
active contributors, such as foreign tourists. This research expands on prior studies of biodiversity monitoring 
by integrating both local and global scales of contributor behavior.

Bewertung von Biodiversitätsmustern auf Basis von iNaturalist-Beobachtungen in Kärnten

ZUSAMMENFASSUNG

Diese Studie untersucht die räumlichen und zeitlichen Citizen Science Beobachtungen für Biodiversitätsmoni-
toring in Kärnten, Österreich, basierend auf iNaturalist Daten von 2015 bis 2022. Sie behandelt sowohl systema-
tische Effekte in der Datensammlung, wie z. B. Tageszeit oder Jahreszeit, als auch die Phänologie von Pflanzen 
und Tieren, wie z. B. saisonale Lebenszyklen, die sich im zeitlichen Ablauf der Beobachtungen widerspiegeln. 
Darüber hinaus untersucht sie die Beziehungen zwischen Landnutzung und den Beobachtungszahlen in einem 
5 × 5 km² Raster, unter Verwendung eines negativen Binomial-Regressionsmodells mit Eigenvector Spatial 
Filtering. Die zeitliche Analyse umfasst weiters saisonale Veränderungen des globalen Beobachtungsverhal-
tens von iNaturalist-Nutzern, die in Kärnten Beobachtungen durchgeführt haben. Die Ergebnisse zeigen einen 
starken Einfluss von Tageszeit, Jahrenzeit und Landnutzung auf die beobachteten Arten und deren Biodiversi-
tät. Die größte Biodiversität wurden hauptsächlich in Wald- und Wiesengebieten und während des Sommers 
beobachtet. Während in absoluten Zahlen versiegelte Flächen, so wie z. B. städtische Umgebungen, eine 
geringere Anzahl von iNaturalist Beobachtungen als einige andere Landnutzungstypen verzeichnen, weisen 
sie aufgrund der leichten Erreichbarkeit und der längeren Beobachtungszeiträume während des Winters (auf-
grund der künstlichen Beleuchtung) einen systematischen Effekt auf. iNaturalist-Beobachtungen, die in Kärn-
ten während des Sommers erfasst wurden, stammen überwiegend von Nutzer:innen, die eher dazu tendieren, 
auch außerhalb Österreichs Daten zu sammeln als diejenigen Nutzer, die in Kärnten während des Winters 
iNaturalist-Beobachtungen erfassen. Das lässt darauf schließen, dass erstere Nutzergruppe international 
aktiver ist, wie z.B. ausländische Touristen. Diese Forschungsarbeit liefert neue Einblicke im Bereich des Bio-
diversitätsmonitoring, indem sie sowohl lokale als auch globale Ebenen des Nutzerverhaltens berücksichtigt.

INTRODUCTION

In recent years, citizen science has emerged as a powerful tool for biodiversity monitoring 
and conservation efforts worldwide. Citizen science platforms have revolutionized the way 
researchers collect and analyze species occurrence data, allowing for unprecedented 
spatial and temporal coverage [1]. The engagement of citizens in scientific research 
not only contributes to data collection, but also fosters environmental awareness and 
scientific literacy among participants [2]. In addition, long-term citizen science data can 
be used to observe temporal trends and changes in phenology due to climate change 
and global warming [3], [4]. iNaturalist stands out as one of the largest unstructured 
biodiversity citizen science survey projects globally, with over 197 million observations 
of plants, animals, fungi, and other organisms worldwide as of July 2024 [5]. The platform 
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allows users to upload an observation (e.g., photo, identification, sound) of an organism. 
These observations are being used for biodiversity monitoring, species distribution 
modeling, and phenological research [6]. Citizen science platforms, such as iNaturalist, 
add to a range of state-of-the-art tools for biodiversity monitoring including unmanned 
aerial systems technology and real-time remote sensing applications [7]. The integration 
of citizen science biodiversity data with advanced spatial modeling techniques has 
further enhanced our ability to analyze and interpret biodiversity patterns across various 
landscapes.
Data contributed to citizen science platforms have been used to augment traditional, 
structured sources of biodiversity data [3], [4]. These efforts increase the number of species 
records in large geographic areas and lead to a more accurate reflection of species 
composition compared to traditional scientific references [8]. However, the opportunistic 
nature of biological recordings via citizen science leads to various biases, including 
spatial, temporal, and taxonomic [9]. Where people live–or where they visit–could have 
strong implications for the spatial locations of the data collected, and the interactions 
between humans and the environment introduce complex spatial and temporal dynamics 
that shape contribution patterns over time. Understanding contribution patterns to citizen 
science platforms is crucial for optimizing data collection strategies and addressing 
potential biases in citizen science datasets. For example, researchers might prefer to use 
observations from more active users who are more likely to record an exhaustive sample 
of a particular taxonomic group of interest in a specific area, excluding low-activity users 
that will not heavily affect sample size [10], [11].
Studies have shown that citizen science data are often biased toward areas with higher 
population density and greater accessibility [12], [13]. Road networks, in particular, 
have been linked to increased contribution rates in both eBird [14] and iNaturalist [15] 
datasets, as the presence of roads can increase the likelihood of chance encounters with 
wildlife [16]. Proximity to roads has been identified as a strong predictor of iNaturalist 
contribution abundance, often diminishing the apparent influence of elevation [15]. 
Collection hotspots are frequently associated with sites that organize public surveys or 
are regularly visited by recording societies [9]. In addition, protected areas and parks tend 
to attract more observers, likely due to their perceived biodiversity value and recreational 
appeal [17]. However, the relationship between protected areas and citizen science 
contributions varies across regions and taxa [13]. In some cases, remote protected 
areas or those managed primarily for biodiversity conservation receive relatively few 
observations despite their ecological importance, as seen in native wetlands and wet 
and dry forests in Hawaii [18]. Similarly, a comparison of the proportion of pixels with 
observed versus expected iNaturalist records across the conterminous U.S. revealed 
a higher-than-expected number of observations in developed areas, with the opposite 
pattern observed for shrublands and grasslands [10], [11]. There is growing evidence that 
the type of environment, particularly the distinction between urban and rural settings, 
influences observers’ behavior and engagement with biodiversity. One study found that 
urban residents generally have lower species identification skills and weaker emotional 
connections to nature than rural residents [19] which may (or may not) contribute to 
reduced participation in citizen science biodiversity mapping. Similarly, residents living 
greater than 10 km from the nearest forest patch performed worse in bird identification 
tasks than those living closer [20]. A review of urban biodiversity research over the past 30 
years also revealed that most studies remain spatially and temporally limited. Broader use 
of citizen science and remote sensing could help overcome these limitations and close 
existing knowledge gaps in urban biodiversity research [21]. 
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Temporal patterns in iNaturalist contributions indicate that user activity peaks globally 
between May and September, with additional spikes during organized events such as 
the City Nature Challenge in late April and various bioblitzes [10], [11]. Contributions are 
also generally higher on weekends compared with weekdays. Similar patterns have been 
observed in other biodiversity-focused citizen science platforms, such as Artportalen, 
alongside long-term trends and weather-related effects [22].
Daily and seasonal cycles further shape temporal observation patterns, as they are closely 
linked both to human activity, such as the preference for data collection on weekends 
[23], and to phenology, that is, the timing of biological events in plants and animals [24]. 
Examining the seasonality and hourly distribution of observations in conjunction with 
environmental factors, such as land cover, can provide valuable insights into these 
temporal patterns and their associated biases, for example, longer daily observation 
windows in urban areas due to artificial lighting. Temporal analysis can also reveal 
unusual phenological events, such as regional flowering peaks, or highlight biases, such 
as the tendency to record plants during their flowering phase [25]. Furthermore, multi-
year analyses of citizen science data aimed at detecting phenological shifts over time 
must account for systematic effects. For instance, a recurring sampling date, such as the 
first Saturday in June, shifts one day earlier each year and resets approximately every 
seven years [23].
In addition to spatial and temporal biases, citizen science datasets are also subject 
to taxonomic biases, meaning that some species are over- or under-represented. For 
instance, a comparison between collections-based bee biodiversity monitoring and 
research-grade iNaturalist observations showed that a small group of well-trained 
participants systematically collecting bees documented biodiversity more effectively 
than thousands of individual iNaturalist contributors [26]. On iNaturalist, the basic unit of 
data is the verifiable observation, which includes a date, georeference, photos or sounds, 
and excludes captive or cultivated organisms. Observations achieve research-grade 
status when at least two-thirds of community identifiers agree on a species-level or lower 
identification. Analyses of bird observations on iNaturalist indicate that large-bodied 
species, common species, and those occurring in large flocks tend to be over-represented 
[27]. Users also often specialize in particular taxa, such as plants or insects, rarely submit 
repeat observations of the same species, and tend to record species common in human-
influenced areas, such as monarch butterflies or mallards [10]. Conversely, species that 
are often hidden, highly mobile, evasive, or difficult to photograph without specialized 
equipment are typically undersampled [28], [29]. Socio-economic constraints and health 
limitations, such as those affecting older individuals, have also been identified as barriers 
to participation in conservation-related citizen science activities [30]. To address such 
sampling biases in species distribution models, corrective methods including spatial 
filtering and background sampling techniques have been developed [31].
Participants in biodiversity projects tend to prefer areas with higher species richness 
and greater taxonomic diversity [32]. Consequently, seasonal variation in observable 
biodiversity may influence travel patterns, such as the distance traveled to observation 
sites for participation in citizen science projects. While other georeferenced crowd-
sourced data, such as tweets [33], have been used to study global mobility patterns, they 
lack the biodiversity context that platforms like iNaturalist provide. Analyzing iNaturalist 
data enables researchers not only to track user movements but also to understand the 
motivations behind these movements in the context of nature observation. Only a few 
previous studies have addressed this research gap. For example, an analysis of iNaturalist 
observations in Hawaii indicated that most contributors were likely visitors [18] while 
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another study found that average travel distances to parks were greater for certain park 
management types, such as National or State Parks, compared with city or county parks 
[34].
This study aims to analyze the contribution patterns to iNaturalist, using Carinthia as a 
case study. As an Alpine region, Carinthia offers diverse opportunities for citizen science 
engagement due to its rich biodiversity, sensitive ecosystems [35], [36], and distinct winter 
and summer seasons [37]. Accordingly, the study provides insights into local contribution 
characteristics for this specific Alpine region, in line with previous local studies that 
have, for example, identified urban biodiversity hotspots [38]. Using a range of analytical 
approaches, the study addresses the following objectives: (1) Identify the key environmental 
factors associated with the spatial distribution of iNaturalist research-grade contributions 
in Carinthia, and (2) examine hourly and seasonal contribution patterns, including the 
distribution of contributions across species and taxonomic kingdoms, the influence of 
land cover on user contributions, and the effect of seasonality on the share of domestic 
versus international data collection efforts by iNaturalist contributors in Carinthia.

METHODS

Data

iNaturalist observations

Research-grade iNaturalist data were obtained through the Global Biodiversity Information 
Facility (GBIF) website [39] in CSV format. GBIF provides access to biodiversity data from 
numerous sources, either by hosting datasets directly or by indexing those maintained 
by external providers. Among the citizen science contributions for Carinthia available 
through GBIF during the 2015-2022 study period, iNaturalist ranked fourth, accounting 
for 15.8% (31,974) of all GBIF records (202,368). Other major contributors include 
the Biodiversitätsdatenbank Nationalpark Hohe Tauern (17.7%, 35,819 records), the 
Biodiversitätsdatenbank Salzburg (17.0%, 34,492 records), and Pl@ntNet (16.4%, 33,089 
records). Because users may contribute to multiple citizen science platforms–sometimes 
under different usernames–combining datasets could lead to duplicate observations. 
Moreover, some platforms focus on specific taxonomic groups. For example, Pl@ntNet 
primarily targets plants. To ensure taxonomic breadth and maintain consistency while 
avoiding potential double counting, this study limits its analysis to a single comprehensive 
source of citizen science data, iNaturalist.
The downloaded iNaturalist research-grade data included georeferenced coordinates, 
timestamps, species identification, anonymized observer IDs, taxonomic information, 
observation quality, and URLs to associated photographic evidence. These data were 
stored in a PostgreSQL database for further analysis, with observations from January 1, 
2015, to January 1, 2023, considered. Because observations initially marked as “Needs 
ID” require time for verification and potential upgrading to research-grade status, we 
focused on the time period of 2015–2022 to ensure the use of stabilized annual datasets 
that had sufficient time for community validation. Research-grade observations are 
particularly valuable for scientific research, as they provide reliable species occurrence 
data at a scale previously unattainable through traditional methods [40].

Other geospatial data

The following data were used in either spatial regression or temporal analysis. Road 
polyline data were obtained from the Carinthia Transportation Department through 
Carinthia University of Applied Sciences. This dataset distinguishes between 12 road 
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classes, which were divided into those with and without car access, followed by the 
computation of the total length of vehicular and pedestrian-only accessible roads within 
each 5 × 5 km2 grid cell. Next, OpenStreetMap (OSM) road data were downloaded (https://
download.geofabrik.de/europe/austria.html), and the direct distance of a grid cell to the 
nearest OSM primary road was computed. A land cover vector dataset was extracted 
from the CORINE Land Cover (CLC) 2018 version which was obtained from the Copernicus 
Land Monitoring Service (https://land.copernicus.eu/en/products/corine-land-cover). It 
comes with a minimum mapping unit of 25 ha at a scale of 1:100,000. The CLC nomenclature 
includes 44 land cover types, organized hierarchically in three levels. For this study, the 
first-level classification with five categories including artificial surfaces, agricultural 
areas, forest and semi-natural areas, wetlands, and water bodies (Figure 1) was used 
for regression, whereas the second-level classification with 12 categories was used 
for charting temporal contribution patterns. Artificial surfaces comprise continuous 
and discontinuous urban fabric, industrial and transport units, as well as artificial, non-
agricultural vegetated areas, such as parks and sport facilities. 

Shapefiles delineating protected areas in Carinthia (see Figure 1) were obtained from 
multiple sources, including the Austrian Federal Ministry for Climate Action, Environment, 
Energy, Mobility, Innovation and Technology. This national-scale dataset served as the 
foundation for extracting protected areas specific to Carinthia. Additional data were 
manually sourced from regional environmental authorities in Carinthia, leading to 687 
protected areas intersecting with Carinthia and covering 837 km2.
A 10 × 10 km2 elevation raster was obtained from the Austrian Open Government Data 
portal, and its mean elevation and slope were resampled to the 5 × 5 km2 analysis grid.
The locations of the ten largest cities and towns in Carinthia as of 2020 (see Figure 1) 
were obtained from the Federal Statistical Office of Austria (“Statistics Austria”), with 
population sizes ranging from approximately 9000 to 102,000 residents. For the regression 
analysis, the distances between each grid cell and the nearest city (town) and protected 
area, respectively, were computed.

Modeling spat ial  contr ibut ion pat terns

A negative binomial regression model was developed to predict the number of 
observations per nominal 5 × 5 km2 grid cell where the size of grid cells is smaller along 

Figure 1: First-level 
classification of 
CORINE land cover, 
protected areas and 
cities/towns in Carinthia

Abbildung 1: Oberste 
Ebene der CORINE-
Landnutzungsklassen, 
Naturschutzgebiete und 
Städte/Gemeinden in 
Kärnten

Fig. 1
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the boundary of the study area. Published literature provides several suggestions for the 
grid size to be used for quadrant count analysis. One method, for example, considers 
study area size and number of events, which gives a recommended grid size of 2 × 2 km2 
for our dataset [41]. However, this grid size results in numerous empty cells, poor model fit 
of the negative binomial regression, and only a few significant coefficients. It also leads 
to excessive computation time when incorporating Eigenvector Spatial Filtering (ESF). 
Therefore, the 5 × 5 km2 grid struck an optimal balance between preservation of spatial 
details in contribution patterns and computational efficiency.
Besides grid size, contribution counts per cell were also considered in data preparation. 
Counting observations in the 5 × 5 km2 grid raster revealed that some “super users” 
had contributed disproportionately large numbers of observations (several thousands) 
concentrated within local areas, which could not be explained by environmental variables. 
These isolated contribution hotspots could not be predicted through regression analysis 
and were therefore mitigated as follows to avoid biased model results. Within each grid 
cell, the number of contributions per unique user were computed. These values were 
then sorted across all grids. The 95th percentile was set as a threshold that was then 
applied to each grid cell, capping the maximum number of observations any single user 
could contribute to any cell. Capping contributions from super users is a common practice 
when modeling activity rates from crowd-sourced data. For example, this can be done by 
retaining only one record when multiple images are taken within the same minute or by 
excluding photos with identical coordinates and owner IDs, as applied in Flickr datasets 
[42], [43].
Candidate predictors, computed for each grid cell, included mean elevation, slope, 
supply of pedestrian-only and car-accessible roads, distance to nearest city and nearest 
protected area, and proportion of the first four land cover types shown in Figure 1, with 
wetland as the default land cover category. The land cover-related variables underwent 
a logarithmic transformation to remove non-normality. In addition, the model included an 
offset term (log of cell size in km2) to account for the varying size of grid cells in which 
iNaturalist observations were taken. To address spatial autocorrelation among regression 
residuals, ESF was employed [44], using the R packages spdep and sf.
The negative binomial regression model, incorporating land cover and other predictor 
variables as well as spatial eigenvectors (EVs), can be expressed as:
log(λ) = β0 + β1X1 + β2X2 + ... + βnXn + offset(log(area)) + γ1EV1  + … + γmEVm + ε  (1)
where λ is the expected count of observations, X1...Xn are the predictor variables, EV1... 
EVm are EVs, indexed β and γ symbols represent coefficients for predictor variables and 
eigenvectors, respectively, which are to be estimated, and ε is the error term.
To construct the final negative binomial regression with selected eigenvectors, a forward 
stepwise selection procedure was implemented based on the Akaike Information Criterion 
(AIC), which balances model fit and complexity. Variables with a Variance Inflation Factor 
(VIF) > 5 were flagged for potential removal due to multicollinearity among predictors. 
Spatial autocorrelation in model residuals was evaluated using Moran’s I, and McFadden’s 
R-squared was calculated to assess overall model fit. 

Seasonal  and dai ly  var iat ions in  observat ion pat terns

The temporal analysis examined changes in contribution patterns, including data 
abundance, number of taxa and users, proportion of taxonomic groups, and most 
frequently observed species, (1) across the four seasons; and (2) throughout the day. Some 
analyses were performed separately for different land cover types. For both seasonal 
and hourly analyses, abundance and taxonomic composition were aggregated from 
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multi-year data (2015-2022) into four seasonal periods and 24-hour intervals, respectively. 
Additional descriptive statistics, such as the number of hours per day accounting for 90% 
of observations for each land cover type and season, were calculated to provide further 
insight into temporal variation in data abundance across different land cover types.
Seasons were defined as spring (March through May), summer (June through August), 
fall (September through November), and winter (December through February). Chi-square 
tests were performed on different types of hourly and seasonal contribution data to identify 
the statistical significance of hourly or seasonal changes in the proportion of contribution 
to different kingdoms, taxonomic categories, and land cover types, respectively. A small 
number of observations, i.e., 50 in spring, 557 in summer, 56 in fall, and 15 in winter, with a 
timestamp of exactly “00:00:00” were excluded from all hourly-related analyses, because 
they lacked actual timestamp information. 

Taxonomic variety  in  observat ion pat terns

Related analyses report the number of unique families and genera across different land 
cover types and seasons. Finally, comparisons of the three most frequently observed 
species for each land cover type and season illustrate the phenological patterns of 
recorded species throughout the year.

RESULTS

Spatial  contr ibut ion pat terns

  Tab. 11 

Variable Estimate IRR p-value

(Intercept) 1.472 4.358 < 0.001

LC proportion: Artificial surface (log) 0.226 1.253 < 0.001

LC proportion: Forest and semi-natural area (log) -0.737 0.479 < 0.001

LC proportion: Water body (log) 0.130 1.138 < 0.001

LC proportion: Agriculture (log) -0.218 0.804 < 0.001

Nearest distance to city [km] -0.212 0.809 < 0.001

Nearest distance to primary road [km] -0.136 0.873 < 0.05

EV2 -3.032 0.048 < 0.001

EV4 5.490 242.138 < 0.001

EV5 -2.816 0.060 < 0.001

EV6 -2.553 0.078 < 0.001

EV7 4.047 57.226 < 0.001

EV9 -4.339 0.013 < 0.001

EV10 -4.382 0.013 < 0.001

EV14 -3.745 0.024 < 0.001

EV15 -3.763 0.023 < 0.001

EV16 3.970 53.000 < 0.05

EV17 2.105 8.207 < 0.001

Other 53 selected Eigenvectors

Number of observations 456

Moran’s I of residuals 0.005 0.377

McFadden‘s R-squared 0.12

McFadden‘s adjusted R-squared 0.10

Table 1: 
Significant predictors 
for iNaturalist  
observations in  
Carinthia

Tabelle 1: 
Signifikante Prädika-
toren von iNaturalist-
beobachtungen  
in Kärnten



Carinthia Nature Tech (2025) | Volume 2 | Issue 2 | pages 7–26	 14

Regression analysis

The final model (Table 1) shows significant predictors after removal of predictors due 
to multicollinearity and only a subset of significant coefficients associated with EVs for 
conciseness. Most EVs included in the model exhibit VIF values close to 1, underlining their 
effectiveness in capturing spatial autocorrelation without introducing multicollinearity. 
The residuals from the model without EVs demonstrated significant spatial autocorrelation 
(Moran’s I = 0.198, p < 0.0001) which was mitigated after incorporating EVs (Moran’s I = 
0.005, p = 0.377). Elevation and the distance to protected areas were non-significant. The 
contribution densities in forested areas, artificial surfaces, and protected areas are 1.85 
points/km², 11.34 points/km², and 4.25 points/km², respectively. This suggests that protected 
areas may function as transitional zones between artificial surfaces and forested land 
cover types, exhibiting neither particularly high nor low contribution densities, which 
likely renders this variable non-significant. 
The model results indicate that the proportion of artificial surfaces and water bodies are 
positively associated with iNaturalist observations, while the proportion of forested areas 
and agricultural lands in a 5 × 5 km2 cell shows negative associations. Proximity to cities 
and primary roads is linked to increased observation counts. Since the link function of a 
negative binomial model is the natural log, the interpretation of regression coefficients 
(e.g., β1), is that each one-unit increase in the mean of a predictor (e.g., x–1) increases 
the mean number of observations contributed to a 5 × 5 km2 cell by a multiplication 
factor exp(β1), which gives the incidence rate ratio (IRR). For example, using the mean of 
18.585 km for the “nearest distance to city” predictor across all cells, an increase of the 
distance by 1 km results in an IRR of e-0.212 = 0.809 and will lead, on average to a decline of  
(1-0.809) = 19.1% of observations in a cell. The effect sizes of the model variables with their 
95% confidence intervals are expressed as IRR in Figure 2 (intercept and eigenvectors 
excluded), revealing the largest effect of log-transformed forest and semi-natural areas 
among significant predictors.

Contributions to land cover types

Users who contributed at least one iNaturalist observation in Carinthia during summer 
between 2015 and 2022 added observations to 2.78 CORINE land cover types (level 2, 
12 types) on average (median: 2, maximum: 11). The right-tailed distribution (Figure 3a) 
and the log-log plot (Figure 3b) indicate that most users concentrated their observations 
on a few land cover types and that the number of contributors exhibited a power law 
relationship with the number of land cover types contributed to (R² = 0.919). 

Figure 2: 
Effect size of 
predictor variables

Abbildung 2: 
Effektgrößen der 
Regressionsvariablen

Fig. 2
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Temporal  contr ibut ion pat terns

Seasonality of contributing individuals

Of the 825 iNaturalist users who contributed iNaturalist observations in Carinthia between 
2015 and 2022, 68.3% contributed data in only a single season, 18.1% in two seasons, 6.9% 
in three seasons, and 6.7% in all four seasons (in any year). The first group represents 
typical seasonal visitors and one-time contributors, where the last group represents 
committed and probably local contributors taking observations throughout the year.

Contributions to biodiversity across days and seasons

The proportion of contributions to different kingdoms varies by hour and season (Figure 4). 
At the 12 pm peak in summer, Animalia comprises 45.4% of contributions, Plantae 51.8%, 
and Fungi 2.7%, whereas in fall the proportion of Animalia (63.1%) and Fungi (16.3%) 
increases but drops for Plantae (20.6%). Kingdom Animalia generally dominates the daily 
tails of early morning and late evening hours across seasons, often reaching 90-100% of 
observations, possibly due to nocturnal animal activity. Protozoa and Bacteria appear 
only sporadically in small numbers, e.g., with 1 observation for Protozoa between 8:00-9:00 
in summer and 1 observation between 11:00-12:00 in fall, and 1 observation for Bacteria 
between 10:00-11:00 in both summer and fall. Summer exhibits the highest overall activity 
with a maximum of about 250 unique users contributing around 2000 observations per 
hour around noon, whereas winter is the opposite with a maximum of about 40 unique 
users contributing around 120 observations per hour around noon.

Figure 3: 
Distribution of land 
cover types contributed 
to expressed as 
histogram (a) and 
log-log plot (b)

Abbildung 3: 
Statistische Verteilung 
der Anzahl von 
Landnutzungsklassen 
mit Beobachtungen 
pro Nutzer, visualisiert 
als Histogram und 
Punktdiagramm 
mit logarithmischer 
Achsenskalierung

Figure 4: 
Hourly distribution of 
kingdoms by season 
in Carinthia

Abbildung 4: 
Anzahl der stündlichen 
Beobachtungen in 
Kärnten, unterteilt 
nach Reich

Fig. 3

Fig. 4
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Results of chi-square tests based on number of observations in Figure 4 show that 
the change in the hourly proportion of observations falling into different kingdoms is 
statistically significant for spring (X² = 2127.01, df = 23, p < 0.001), summer (X² = 7336.29, 
df = 23, p < 0.001), fall (X² = 2019.01, df = 23, p < 0.001), and winter (X² = 603.08, df = 23, p < 
0.001). The proportions of kingdoms also vary significantly between seasons. For instance, 
Plantae dominates in spring (51.7%) and summer (51.8%), while Animalia is more prevalent 
in fall (63.1%) and winter (56.1%). 

Seasonality of contribution patterns across land cover types

Table 2 lists the three most frequently observed species in four land cover types across 
four seasons. Some apparent patterns emerge, such as the predominance of butterfly 
and other insect observations during summer and fall for agricultural areas, followed by 
a shift toward more observations of birds during winter. This pattern aligns with natural 
phenological changes and shifts in species visibility [25], [45]. Artificial surfaces show a 
mix of urban-adapted species, with birds and insects dominating. Forest and semi-natural 
areas display high biodiversity, featuring a variety of plants, insects, and amphibians, with 
notable seasonal shifts from spring flowers to summer butterflies and fungi (fly agaric) in 
fall. Water bodies demonstrate a clear focus on aquatic species observed in summer, and 
birds during the remaining seasons. Each land cover type reflects its unique ecological 
characteristics, with seasonal variations in the most frequently observed species, 
highlighting the diverse habitats and seasonal dynamics of the region. The wetland habitat 
land cover type was excluded due to its limited number of recorded species.

Table 3 presents the typical daily observation window lengths, showing the number of 
hours per day that account for 90% of observations across different land cover types 
and seasons. The data indicate that summer generally provides the longest observation 
windows for iNaturalist data collection, with the exception of water bodies, which exhibit 
slight deviations. In winter, the longest observation window (11 hours) occurs on artificial 
surfaces, likely due to the influence of artificial lighting. In contrast, during summer, the 
longest observation window is observed in agricultural areas (17 hours), possibly attributed 
to minimal canopy cover and fewer obstructions to sunlight, resulting in extended natural 
daylight. 

Tab. 2 Table 2: 
Top three observed 
species in four land 
cover types across four 
seasons

Tabelle 2: 
Die am häufigsten 
drei beobachteten 
Arten in vier 
Landnutzungsklassen 
während der vier 
Jahreszeiten
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  Tab. 3i

Season Artificial surfaces Forest and semi 
natural areas Agricultural areas Water bodies Wetlands

Spring 11.00 10.00 13.55 12.05 11.00

Summer 15.00 16.00 17.00 11.00 12.00

Fall 14.00 8.00 11.00 11.80 8.00

Winter 11.00 8.00 8.35 9.00 5.00

The number of observations across the five land cover types by hour of the day and 
season are plotted in Figure 5 and summarized in Table 4. The relative abundance of 
contributions is highest in forest and semi-natural areas during spring (44.3%), summer 
(57.5%), and fall (36.7%), which also correspond to the highest biodiversity levels among 
all land cover types in these seasons (Figure 6). In winter, agricultural surfaces show the 
highest relative abundance of contributions (35.4%) and the greatest biodiversity for that 
season (see Figure 6). The proportion of contributions from artificial surfaces is lowest 
in summer (13.5%), suggesting that observers spend more time exploring natural areas 
outside of urban environments during this period. A chi-square test of independence 
indicates that the distribution of observations across different land cover types varies 
between seasons (X² = 1349.86, df = 12, p < 0.0001). Furthermore, the proportion of 
contributions to different land cover types varies significantly by hour of day for spring 
(X² = 898.46, df = 4, p < 0.001), summer (X² = 1886.91, df = 4, p < 0.001), fall (X² = 1263.45,  
df = 4, p < 0.001), and winter (X² = 494.37, df = 4, p < 0.001). 

Table 3: 
90% observation hour 
ranges across seasons 
and land cover types

Tabelle 3: 
90% Beobachtungs-
fenster während der 
vier Jahreszeiten in fünf 
Landnutzungsklassen

Figure 5: 
Hourly contribution 
numbers for different 
land cover types across 
four seasons

Abbildung 5: 
Stündliche Beobach-
tungszahlen in fünf 
Landnutzungsklassen 
während der vier 
Jahreszeiten

Fig. 5
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  Tab. 4i

Land cover type Spring Summer Fall Winter

Agricultural surface 1270 (31.3%) 3772 (22.0%) 939 (27.1%) 314 (35.4%)

Forest and semi natural area 1798 (44.3%) 9830 (57.5%) 1272 (36.7%) 216 (24.4%)

Artificial surface 848 (20.9%) 2308 (13.5%) 1081 (31.2%) 264 (29.8%)

Water body 94 (2.3%) 874 (5.1%) 123 (3.6%) 81 (9.1%)

Wetland 45 (1.1%) 325 (1.9%) 47 (1.4%) 11 (1.2%)

Taxonomic variety  of  contr ibut ions

The number of contributed family-level taxa across land cover types for all four seasons 
is illustrated in Figure 6. Forest and semi-natural areas exhibited the highest taxonomic 
diversity in spring, summer, and fall, while agricultural areas showed the greatest diversity 
in winter. Across all land cover types, taxonomic diversity peaked in summer and reached 
its lowest levels in winter. 

Global  v is i tat ion pat terns  of  iNatural is t  contr ibutors

For this analysis, we identified iNaturalist users who contributed at least once during 
winter or summer in Carinthia between 2015 and 2022, and retrieved the total number of 
countries they contributed to during this period (Figure 7). Users contributing in summer 
(mean = 4.29, median = 3) were active in a greater number of countries than those 
contributing in winter (mean = 3.57, median = 1). This indicates that winter contributors 
were more likely to be local, whereas summer contributors tended to be visitors who also 
submitted observations from other countries. During summer, which showed the highest 
level of international participation, the top three countries of contribution following Austria 
were Germany (230 users), Italy (194 users), and Croatia (121 users). In contrast, winter 
observations reflected lower international involvement, with most non-Austrian users 
originating from Germany (113 users), Italy (42 users), and the United States (39 users).
Figure 8 offers a complementary perspective on the international activity of iNaturalist 
users who contributed at least once to Carinthian observations. It displays the proportion 
of observations made in Austria relative to total user contributions, separated by season 

Table 4: Number and per-
centage of observations 
falling into five different 
land cover types for four 
seasons (numbers in 
bold indicate land cover 
with highest proportion 
of contributions)

Tabelle 4: Anzahl 
und Prozentanteil 
der Beobachtun-
gen, unterteilt in fünf 
Landnutzungsklassen 
und vier Jahreszeiten 
(fettgedruckte Zahlen 
beziehen sich auf die 
Landnutzungsklasse mit 
dem höchsten Beobach-
tungsanteil)

Figure 6: 
Number of different 
family taxa observed 
across four seasons 
and five land cover 
types

Abbildung 6: 
Anzahl der verschiede-
nen Familien in Beob-
achtungen während der 
vier Jahreszeiten in fünf 
LandnutzungsklassenFig. 6
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and summarized over the study period. During summer, a substantial share of users 
(54.1%) recorded 90% or fewer of their observations in Austria, followed by spring (40.1%), 
indicating higher international mobility among contributors, likely reflecting visiting or 
traveling users. In contrast, the distributions for fall and winter suggest predominantly 
local (Austrian) contributors, with few users submitting observations from outside of 
Austria.

Figure 7: 
Distribution of 
visited countries and 
corresponding log-log 
plots in winter (a)  
and summer (b)

Abbildung 7: 
Statistische Verteilung 
von besuchten Ländern 
und entsprechende 
Punktdiagramme 
mit logarithmischer 
Achsenskalierung 
während des Winters 
(a) und des  
Sommers (b)

Figure 8: 
Distribution of users 
contributing different 
proportions of 
observations to Austria 
by season

Abbildung 8: 
Statistische Verteilung 
von Nutzern mit 
verschiedenen Anteilen 
von Beobachtungen in 
Österreich während der 
vier Jahreszeiten

Fig. 7

Fig. 8

Fig. 7
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DISCUSSION

Land use cover  and observat ion pat terns

Although urban environments generally support fewer native plant and animal species 
[46], our results show a positive association between artificial surface land cover and 
observation density. This pattern reflects user contribution bias and supports previous 
findings that cities act as hotspots for biodiversity monitoring [47]. Some insect species 
frequently enter buildings during colder months, increasing their visibility to observers and 
leading to an overrepresentation of records from artificial surfaces [48]. Consequently, 
such observations may misrepresent the true outdoor distribution of these species. For 
example, in our dataset, 67.6% of annual observations of the Western conifer seed bug 
and the Asian lady beetle on artificial surfaces occurred in October and November alone, 
making them the most frequently recorded species in fall (compare Table 2). iNaturalist 
records lack an explicit indicator denoting whether an observation was made indoors, 
which constrains the ability to evaluate potential overrepresentation arising from insects 
that have entered buildings. Nonetheless, the iNaturalist Never Home Alone: The Wild 
Life of Homes project (https://www.inaturalist.org/projects/never-home-alone-the-wild-
life-of-homes) provides relevant contextual information regarding data collection within 
indoor environments. As of September 2025, it had accumulated over 67,000 observations 
of more than 8,200 species worldwide, a negligible fraction compared to the hundreds of 
millions of total iNaturalist records. This pattern suggests that indoor observations are 
unlikely to introduce substantial bias.
Although not examined in this study, previous research found that the spatial bias of 
species occurrence records across multiple biodiversity databases has changed over 
time, varying among land use categories. Specifically, site visitation probability derived 
from crowd-sourced datasets increased more strongly in urban areas than in other land 
use types [49]. Therefore, when estimating long-term trends in species distributions from 
crowd-sourced data, analyses should account for temporal changes in spatial sampling 
bias.
The overall positive association of iNaturalist observations with water bodies observed 
in our study likely reflects both the ecological appeal of these habitats to wildlife and the 
attraction they hold for nature enthusiasts and the general public for recreational activities 
[50], which can lead to oversampling of freshwater organisms [51]. Individual user behavior 
can further amplify this observation bias. A striking example in our dataset is a single user 
who recorded 245 observations of Wels catfish in 2022, primarily using an underwater 
camera while diving at Millstätter See, making this species the most frequently observed 
in water bodies during summer (see Table 2). This user alone accounted for 82.5% of 
all fish records, demonstrating how specialized activities, such as diving or boating, 
can disproportionately influence species representation in certain environments. The 
behavior of “super users,” who contribute exceptionally large numbers of observations, 
deviates from typical patterns linked to land cover or time of day, representing an outlier-
driven user contribution bias that is distinct from other forms of sampling bias.
The negative relationship between iNaturalist contribution numbers and forested, semi-
natural, and agricultural areas reflects the challenges of accessing remote locations, 
the additional time required to travel from urban centers, and the comparatively lower 
biodiversity of intensively farmed landscapes in Austria [52]. This insight highlights 
opportunities for education and outreach, suggesting that targeted initiatives could 
promote iNaturalist usage in agricultural and forested areas, thereby improving the 
spatial coverage of observations and providing a more comprehensive picture of 
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Carinthian biodiversity. Previous studies have shown that iNaturalist observations tend 
to cluster around tourist hotspots, particularly ecotourism sites rather than cultural sites 
[53], indicating that visits to cultural locations are generally less motivated by species 
observation than visits to natural sites. While the current study focused on the role of 
land cover types for biodiversity mapping, future work could analyze the role of different 
types of tourist and recreational sites for iNaturalist contribution behavior in Carinthia 
and explore its relationship with either official visitation counts or review counts from 
different online platforms, such as TripAdvisor, Yelp, or Google [54]. This could help to 
further disentangle the joint effect of phenology and user contribution bias in observed 
contribution patterns. Our dataset did not reveal a significant association between 
protected areas and iNaturalist mapping activities, representing a middle ground between 
previously reported patterns of either oversampling or undersampling in protected areas, 
which often vary depending on their location [55].

Temporal  observat ion pat terns

The temporal patterns in iNaturalist contributions show substantial seasonal and daily 
variation, influenced both by plant and animal phenology, as well as by observer schedules 
and daylight availability. Reduced activity in winter is expected due to shorter daylight 
hours, difficulties in spotting and photographing organisms under low-light conditions, and 
the decreased activity of many species, such as insects, small mammals, amphibians, and 
reptiles, which may hibernate [56], [57]. Previous studies reported strong seasonal trends in 
freshwater fish observations, with higher counts in summer as fish retreat to deeper waters 
during winter [58], consistent with the summer peak in fish observations seen in our dataset. 
Similarly, the autumn peak in fungal observations aligns partially with the fruiting season of 
edible mushrooms in Austria, which occurs in late summer and fall [59]. The low number 
of observations for Protozoa and Bacteria highlights the limitations of citizen science in 
capturing microscopic life forms [60], with records appearing only sporadically in summer 
and fall. 
Our analysis reveals seasonal shifts in contribution bias, as measured by the distance 
between observation sites and the nearest city, with the magnitude of these changes 
varying by land cover type. For instance, the median distance for observations in forest and 
semi-natural areas increases from 14.3 km in winter to 18.9 km in summer, a rise of about 
32%, whereas for artificial surfaces the increase is more pronounced, from 4.7 km to 8.9 km, 
or roughly 89%. This pattern indicates that the typical urban-centric overrepresentation is 
partially alleviated in summer, when human activities extend further into areas away from 
large urban settlements. Consequently, summer provides a more balanced and less biased 
dataset compared to winter. 
The hourly distribution of user activity across seasons reveals a clear pattern of daytime-
focused observations, with peak activity around 12:00 pm in summer, shifting to 1:00 pm in 
winter (see Figure 4). Similarly, analysis of eBird data [61] demonstrated that observation 
times closely track daylight hours across seasons. Previous research has also examined 
additional factors influencing observation bias, such as weekday, temperature, and 
precipitation. For example, one study assessed these effects using several tree species in 
the Iberian Peninsula, which retain a consistent appearance throughout the year [62]. While 
a similar approach could be applied in Carinthia, stronger seasonal variation in this region 
makes identifying species with year-round consistent appearance more challenging. 

Limitat ions

Observations recorded exactly at midnight were excluded from the temporal analysis, 
as they likely represent data artifacts. Similar patterns have been noted in analyses of 
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eBird data, where default timestamps (12:00 a.m.) led to an overrepresentation of midnight 
observations [23]. A comparable data artifact, though occurring in the spatial domain, 
arises when latitude and longitude values are missing from point records, resulting in the 
appearance of a fictional “Null Island” located at 0° latitude and 0° longitude in the WGS 
84 geographic coordinate system [63]. 
The identification of highly active contributors (“super users”) led us to exclude some of 
their observation data from the spatial regression analysis, as their excessive numbers 
of contributions were unlikely to be explained by environmental factors and were more 
plausibly driven by personal motivations. Some super users may seek recognition by 
uploading numerous photos of the same individual organism each day, without an 
apparent intent to add genuine scientific value to the iNaturalist dataset. Others are 
(semi)professionals, such as members of local societies or participants in organized 
events like the City Nature Challenge or bioblitzes, who use the platform to document 
and manage their field data over multiple years. Their contributions often hold substantial 
scientific value, which can also result in repeated observations of the same species 
across time [10]. An examination of the top ten users in our dataset indeed reveals distinct 
contribution patterns. Some focus on a few taxa (for example, monitoring Lepidoptera or 
fungi at a single site throughout the year), whereas others document a broad range of 
species across many taxa and locations. Although both groups generate large volumes of 
data, the scientific value of their contributions cannot easily be inferred from their activity 
patterns alone. Regardless of motivation, including all data from these super users in the 
spatial regression analysis would give disproportionate influence to a small subset of 
individuals, potentially biasing the results. Their contributions, however, remain included 
in descriptive analyses to reflect the full spectrum of citizen science participation. Finally, 
examining anomalous activity patterns among individuals may still yield valuable insights 
into atypical participation behaviors among iNaturalist super users [64].
Land cover analyses relied on first- and second-level CORINE classifications derived 
from satellite imagery. While widely used, this approach can mask local conditions and 
functional differences within classes. For example, monoculture spruce plantations are 
typically classified as “forest and semi-natural areas,” although their ecological and 
functional characteristics more closely resemble agricultural land. Similarly, the second-
level “pasture” class may encompass both species-rich meadows and intensively 
managed grasslands for cattle, the latter being more akin to “heterogeneous agricultural 
areas.” These limitations are inherent to the CORINE dataset but could be partially 
addressed by incorporating local land use data where available.

CONCLUSIONS AND FUTURE WORK

The analysis of iNaturalist data in Carinthia reveals several notable spatial and temporal 
patterns in data contributions. Some of these patterns likely reflect genuine ecological 
and phenological variation, such as fungi being most frequently observed in forest areas 
during the fall. Other patterns, however, may result from imbalanced sampling effort, 
including the overrepresentation of observations in densely populated areas. This study 
highlights user contribution biases that have received little attention in previous research, 
such as the influence of “super users” and the interaction of seasonality with proximity 
to cities and land use type. Future initiatives should aim to address spatial and temporal 
gaps in data collection to provide a more comprehensive and representative picture of 
Carinthian biodiversity [65]. To further investigate the complex relationships between 
environment and observation patterns, future research should apply additional analytical 
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approaches. Machine learning methods, such as random forests or gradient boosting, 
could help capture non-linear relationships and interactions among variables. Time 
series analyses would allow deeper exploration of temporal trends and seasonal effects. 
Furthermore, integrating data from multiple citizen science platforms or online review 
sources, and comparing these with professional biodiversity surveys, could provide a 
more comprehensive understanding of Carinthia’s biodiversity and help identify priority 
areas for targeted citizen science efforts [60]. 
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