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ABSTRACT

Growing urbanization is driving the demand for infrastructure such as parking lots, roads, and bicycle lanes. 
While green spaces and trees are often integrated into these development projects to mitigate negative 
climate impacts, they can cause root-related damage that poses safety risks and requires costly monitoring. 
Public road networks are typically inspected with advanced but expensive surveillance vehicles that are too 
costly for private applications, leaving private infrastructure such as parking lots, private roads, and storage 
areas without comparable solutions. Thus, this paper presents a methodology for detecting and classifying 
damage areas in 3D point clouds of parking lots, distinguishing root-related damage from construction joints 
using a combination of deep learning and classical statistics. The approach is evaluated on data from Vienna 
International Airport and validated against manually labeled ground truth data. Results show that accurate 
localization and classification of damage is feasible using only a single laser scanner, providing a cost-
effective alternative to conventional monitoring. Moreover, the method facilitates predictive maintenance by 
automatically detecting damage and enabling integration into Building Information Modeling software.

Vorausschauende Instandhal tung von Infrastruktur :  E f f iz iente  Schadensdetekt ion 
mithi l fe  von 3D-Punktwolken

ZUSAMMENFASSUNG

Die wachsende Urbanisierung erhöht die Nachfrage nach Infrastruktur wie Parkplätzen, Straßen und 
Radwegen. Grünflächen und Bäume werden häufig in diese Entwicklungsprojekte integriert, um negative 
Effekte des Klimawandels abzumildern. Allerdings können diese wurzelbedingte Schäden verursachen, die 
Sicherheitsrisiken bergen und eine kostenintensive Überwachung erfordern. Das öffentliche Straßennetz 
wird in der Regel mit fortschrittlichen, jedoch teuren Überwachungsfahrzeugen inspiziert, die für private 
Infrastruktur wie Parkplätze, Privatstraßen und Lagerflächen zu kostspielig sind.  Daher wird in diesem Paper 
eine Methodik zur Erkennung und Klassifizierung von Schäden in 3D Punktwolken von Parkplätzen vorgestellt, 
bei der wurzelbedingte Schäden mithilfe einer Kombination aus Deep Learning und klassischer Statistik von 
Baufugen unterschieden werden. Der Ansatz wird anhand von Daten des Flughafens Wien evaluiert und 
mit manuell annotierten Ground-Truth-Daten validiert. Die Ergebnisse zeigen, dass eine präzise Lokalisierung 
und Klassifizierung von Schäden mit einem einzelnen Laserscanner möglich ist, was eine kostengünstige 
Alternative zu herkömmlichen Monitoringverfahren darstellt. Darüber hinaus unterstützt die vorgeschlagene 
Methode Predictive-Maintenance-Maßnahmen, indem Schäden automatisch erkannt und in Building 
Information Modeling-Software integriert werden können.

 
INTRODUCTION

Since 2008, more than half of the global population lives in urban areas, a proportion 
that is expected to increase to 68% by 2050 [1]. While urbanization drives economic and 
social progress, it also increases soil sealing, impacting the environment and society [2]. 
The expansion of impervious surfaces – such as roads, buildings, and parking lots – at 
the expense of green and open spaces is a global trend with profound environmental 
consequences. It exacerbates the effects of heavy rainfall by contributing to flooding 
and also intensifies the urban heat island effect. A common strategy to mitigate these 
effects is incorporating green spaces, especially trees, into sealed areas, as they promote 
cooling [3], water evaporation, air purification [4], and hydrological protection  [5]. While 
essential for addressing climate change-related challenges, plant and root growth can 
damage infrastructure, causing cracks or bulges in surfaces. Consequently, systematic 
infrastructure monitoring and inspection are essential for early damage detection 
and predictive maintenance, enabling cost-effective repairs, reducing accident risks, 
extending infrastructure lifespan, and enhancing public safety. However, these monitoring 
and inspection efforts demand substantial time and financial resources from infrastructure 
operators.
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A significant portion of infrastructure, including parking lots, roads, and bike lanes, is 
publicly owned and is monitored using expensive surveillance vehicles. While effective 
for inspections, their high cost makes them inaccessible to private sector organizations, 
businesses, and operators of commercial or private infrastructure who are responsible 
for managing and maintaining private roads, parking lots, and other outdoor spaces. 
Consequently, inspecting infrastructure in these settings presents a more significant 
challenge. Recent studies on low-cost road and infrastructure inspections mainly utilize 
two-dimensional (2D) images, as they are cost-effective and easily captured with readily 
available devices such as smartphones [6]. However, 2D imagery lacks depth information, 
which limits its ability to capture detailed geometric characteristics of surface conditions. 
In contrast, three-dimensional (3D) point clouds provide rich geometric and color 
information, enabling a more comprehensive analysis, which not only improves the 
detection and classification of surface anomalies but also allows for a more accurate 
assessment of their extent. Consequently, 3D data support more informed decision-making 
by enabling the prioritization of maintenance tasks based on the geometric severity of the 
detected damage. For instance, pavement damage inspection using 3D point clouds is 
described in [7] and [8].
Against this background, our paper presents a cost-effective methodology for detecting 
and classifying damage to parking infrastructure using 3D point cloud data, acquired using 
a terrestrial laser scanner instead of a full surveillance vehicle. The proposed approach 
combines deep learning with classical statistical techniques to distinguish between 
damage caused by root growth and construction joints. Specifically, a PointNet-based [9] 
neural network is applied to segment the parking lot into relevant and non-relevant points. 
Damage is then identified at the relevant points through the geometric approximation of 
the ground surface and the classification and directional analysis of damage. Since the 
damage detection takes place within a georeferenced 3D point cloud, the results can be 
integrated directly into Building Information Modeling (BIM) systems, enabling efficient 
planning and management of maintenance activities. In summary, our contributions are:
  �Framework: We propose a common framework for detecting, documenting, and 

classifying infrastructure damage using georeferenced 3D point cloud data. The 
framework segments relevant surface points and distinguishes damage caused by root 
growth from construction joints. This offers a more cost-efficient solution compared to 
the use of surveillance vehicles and delivers greater accuracy than conventional 2D 
image-based monitoring methods.

  �Experiment: We assess the accuracy and completeness of damage detection by 
comparing the model’s output with manually annotated ground truth data, using a real-
world parking lot at Vienna International Airport as a test site.

MATERIALS AND METHODS

Data Collection and Pre-Processing
The study was conducted in Parking Lot D at Vienna International Airport, which spans 
an area of approximately 13,000 m² and is depicted in Figure 1. Data acquisition was 
performed using the terrestrial laser scanner VZ-400i (Riegl International GmbH, Vienna, 
Austria). For accurate georeferencing, existing control points in the surrounding area 
were additionally captured. In total, 98 scan positions were recorded and subsequently 
processed using RiSCAN PRO software (RIEGL Deutschland Vertriebsgesellschaft mbH, 
Gilching bei München, Germany) . The raw point cloud data were filtered to exclude points 
with reflectivity values below -25 dB or above 5 dB, as well as those with a deviation value 
exceeding 15. Low reflectivity often results from weak signal returns on dark or absorbent 
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surfaces, whereas high reflectivity may indicate sensor artifacts. Elevated deviation 
values typically reflect measurement noise. Filtering these outliers improves geometric 
accuracy for subsequent analysis and reliability. The individual scan positions were then 
registered relative to each other to align and merge them into a unified coordinate system. 
The resulting point cloud was colorized using RGB values extracted from images taken by 
the scanner’s internal camera. Movable objects, such as vehicles and pedestrians, were 
removed by the software, while residual noise was manually eliminated using the Terrain 
Filter tool.

The consolidated point cloud with a resolution of 1 cm was imported into the software 
program CloudCompare [10] for further refinement. Statistical outlier removal was 
conducted to further eliminate noise points that compromise the integrity of the dataset. 
Subsequently, the point cloud was manually annotated to assign each point to one of the 
classes: ground, tree, low vegetation, and car. Figure 2 presents the point cloud of the test 
site at Vienna International Airport in two formats: one representing the cleaned data and 
the other depicting the class labels.

Model Implementation and Training

Our methodology comprises three primary steps: 1) segmentation of the point cloud to 
identify relevant features (such as ground, vegetation, and trees) for further analysis, 
while excluding irrelevant points (such as vehicles); 2) tree documentation and damage 
detection, which leverages geometric features such as positive and negative protrusions 

Figure 1: 
Parking Lot D at Vienna 
International Airport. 
Source: own figure.

Abbildung 1: 
Parkplatz D am 
Flughafen Wien. 
Quelle: eigene 
Abbildung.

Figure 2: 
Cleaned (left) and 
labeled (right) point 
cloud of the test site at 
the Vienna International 
Airport. Source: own 
figure.

Abbildung 2: 
Gesäuberte (links) 
und klassifizierte 
(rechts) Punktwolke 
des Testgeländes am 
Flughafen Wien. Quelle: 
eigene Abbildung.

Fig. 1

Fig. 2
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to identify surface anomalies; and 3) classification and documentation of the identified 
areas of damage, distinguishing between those caused by root growth and construction 
joints. Future research will extend this analysis to include additional damage types, 
such as those induced by heavy usage or freeze-thaw cycles, including potholes and 
subsidence.

Segmentation

In the first step, we employ deep learning techniques for automatic point cloud 
segmentation. Specifically, we adopt a PointNet-based approach [9], which processes raw 
point cloud data directly [11], eliminating the need for intermediate steps like voxelization 
[12] or 2D image conversion [13]. To improve computational efficiency, the point cloud 
is first down-sampled using uniform grid sampling and then split into training (≈70%), 
validation (≈20%), and testing (≈10%) sets. The PointNet-based model is implemented 
using Python’s PyTorch framework [14] and is trained for 100 epochs on a GeForce RTX 
3090 GPU (NVIDIA Corporation, Santa Clara, CA, USA) for parameter optimization. Post-
inference inaccuracies, which primarily result from limited training data and labeling 
noise, are reduced using a multi-step refinement of car and vegetation detection. Initially, 
the inference results are projected onto a 2D bird’s-eye view of the scene, where the 
respective objects are delineated through density-based clustering. The boundaries of 
these regions are subsequently refined, and the corrected segmentations are reprojected 
into the 3D point cloud to enhance spatial accuracy. Subsequently, all detected vehicles 
are removed from the dataset, as they are not relevant for assessing ground surface 
damage.

Damage Detection

In the second step, tree positions are extracted from the segmented “tree” point cloud. 
Individual trees are identified and isolated using density-based clustering. The position of 
each tree is defined as the ground-level coordinate located at the center of the tree stem. 
This georeferenced information can be directly integrated into a BIM system, which is 
increasingly important in a smart facility planning context, where accurate, up-to-date 
models of both built and natural assets are essential. Such integration helps in assessing 
risks related to root intrusion, visibility obstructions, and vulnerability to storms.
The segmented point clouds corresponding to the “ground” and “vegetation” classes are 
further analyzed. The ground point clouds are divided into disjoint square regions for ground 
plane approximation. Within each subdivision, a fourth-degree polynomial regression 
model is applied to capture nonlinearities in the data, such as surface irregularities. To 
ensure robustness against outliers, a RANSAC (Random Sample Consensus) regressor is 
employed. This process generates a fourth-degree polynomial function for each square 
segment of the ground, which models its complex and uneven surface. The resulting 
surfaces are then connected using bicubic interpolation, providing a smooth and 
continuous approximation of the entire ground surface. This approximation facilitates the 
identification of damage, with root-induced defects manifesting as positive protrusions 
and construction joints corresponding to either positive or negative protrusions. These 
deviations are identified by comparing the point cloud data to the approximated ground 
surface.

Damage Classification

In the third step, we differentiate whether the identified areas of damage are caused 
by tree root growth or construction. This involves a detailed analysis of the damage 
structure. Initially, individual damage areas are delineated from one another. The point 
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cloud is then converted into a graph representation using a k-d tree, which is a data 
structure optimized for efficient nearest-neighbor searches and partitioning of points in 
k-dimensional spaces. Each connected component in the point cloud is initially assigned 
to a single area of damage. However, due to the inherent incompleteness of point clouds, 
collinear areas of damage are merged, as missing points often cause discontinuities that 
actually represent one single contiguous area of damage. After this merging process, 
areas of damage are classified based on their geometric properties. Root-induced 
damage tends to be curved and aligns with the direction of the recorded tree positions, 
distinguishing them from linear construction joints, which are typically straight. Other 
damage types, such as potholes, were not present in the test data.

RESULTS

As outlined in the previous section, the proposed infrastructure monitoring framework 
consists of three main stages: segmentation of the point cloud, documentation of 
trees and detection of damage, and subsequent damage classification. To ensure a 
comprehensive evaluation of the framework’s effectiveness, each stage is assessed 
independently. As previously mentioned, the evaluation is conducted on Parking Lot D at 
Vienna International Airport.

Segmentation Results 

Training and optimizing the PointNet-based neural network over 100 epochs on the training 
set—which includes approximately two rows of the parking area—yielded a point-wise 
accuracy of 97.16% on the training data and 95.32% on the validation data. Evaluation of 
the unseen test area, which corresponds to a short parking row, resulted in a point-wise 
accuracy of 92.61%. Table 1 summarizes the corresponding per-class accuracies and 
the mean Intersection over Union (mIoU) for each class. Qualitative visualization of the 
segmentation results is provided in Figure 3. The model demonstrated a strong ability to 
distinguish between the predefined classes, with particularly high separability observed 
for the “ground” and “tree” classes. However, due to the limited extent of the training 
data and some labeling noise in the “vegetation” and “ground” classes, the segmentation 
exhibited inaccuracies at class boundaries, especially between the classes “car”, 
“ground”, and “vegetation”. These boundary ambiguities were subsequently mitigated 
by incorporating geometric features of the point cloud, as described in the previous 
section, resulting in the refined segmentation illustrated in Figure 4 and yielding an overall 
classification accuracy of 97.74% on the test set.

  Tab. 11

After Segmentation After refinement

Class Class Accuracy IoU Class Accuracy IoU

Ground 0.944 0.925 0.999 0.978

Tree 0.943 0.921 0.989 0.963

Vegetation 0.726 0.644 0.739 0.704

Car 0.824 0.602 0.917 0.916

Damage Detection

As tree detection is performed through straightforward density-based clustering on a 
clearly distinguishable point cloud class, it was considered a trivial task in this context 

Table 1:  
Class accuracy 
and class IoU after 
segmentation and 
refinement.

Tabelle 1: 
Class Accuracies und 
Class IoU nach der 
Segmentierung und 
Verfeinerung.
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and therefore not subject to quantitative evaluation.
The previously described method, which detects damage by analyzing deviations between 
the point cloud and the approximated ground surface, effectively localized damaged 
regions, achieving a mutual overlap of 95.9% with manually annotated ground truth data. 
The overlap was calculated by measuring nearest-neighbor distances between points 
in both point clouds, with overlap defined as points within a distance threshold set at 
1% of the bounding box diagonal. The mutual overlap ratio was computed by averaging 
the directional overlaps from each cloud to the other. Figure 5 presents a comparison 
between manually labeled damage and examples of damage identified by the system. 
Overlapping points are shown in green, while red and blue points represent those unique 
to the ground truth and system output, respectively. Although the overall overlap was 
high, our method occasionally failed to detect fine construction joints characterized by 
subtle negative surface deviations. In contrast, it demonstrated high sensitivity to positive 
protrusions, detecting root-induced damage with high accuracy.

Figure 3: 
Qualitative segmenta-
tion results on the test 
data set. Source:  
own figure.

Abbildung 3: 
Qualitative Segmen-
tierungsergebnisse 
auf dem Testdatensatz. 
Quelle: eigene  
Abbildung.

Figure 4: Qualitative 
segmentation results on 
the test data set after 
refinement. Source: 
own figure.

Abbildung 4: 
Qualitative Segmen-
tierungsergebnisse 
auf dem Testdatensatz 
nach der Verfeiner-
ung. Quelle: eigene 
Abbildung.

Figure 5: 
Comparison of ground 
truth and detected 
damage. Overlapping 
points are shown in 
green, while red and 
blue indicate points 
unique to the ground 
truth and system output, 
respectively. Full point 
cloud (top), damage 
only (bottom). Source: 
own figure.

Abbildung 5: 
Vergleich von 
manuell erkannten 
und automatisch 
detektierten 
Schadstellen. 
Überlappende Punkte 
sind in Grün dargestellt, 
Rot und Blau zeigen 
jeweils Punkte, die 
ausschließlich in der 
Ground Truth bzw. 
in der Auswertung 
enthalten sind. 
Gesamte Punktwolke 
(oben), nur Schäden 
(unten). Quelle: eigene 
Abbildung.

Fig. 3

Fig.4

  Fig. 5
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Damage Classification

Subsequently, individual areas of damage were classified based on their geometric 
characteristics to differentiate between curved, root-induced damage and the typically 
linear patterns associated with construction-related damage. Figure 6 illustrates the 
qualitative results of the classified damage, where root-induced damage is visualized in 
red and construction joints in green. The overall classification achieved an accuracy of 
95.15%. The accuracy was determined by establishing spatial correspondence between 
the predicted and ground truth point clouds. This was achieved by identifying the nearest 
neighbor in the ground truth for each point in the predicted dataset using a k-d tree. Since 
the point clouds differed in sampling density and exhibited spatial deviations between 
predictions and annotations, they also differed in the number of points, making one-to-
one correspondence infeasible. Consequently, the nearest-neighbor approach offered a 
robust solution for establishing spatial correspondence and evaluating geometric overlap 
between the two datasets.

DISCUSSION AND CONCLUSION

This study presents a low-cost and scalable methodology for detecting and classifying 
surface-level infrastructure damage using 3D point cloud data. Our framework represents 
a significant advancement in making infrastructure monitoring more accessible. By 
eliminating the need for expensive surveillance vehicles and relying instead on terrestrial 
laser scanners and point cloud processing, it enables smaller organizations and private 
entities to conduct reliable, automated inspections. This has the potential to improve 
predictive and preventive maintenance efforts as well as safety, especially in private 
parking lots, campuses, and commercial zones. Moreover, preliminary estimates indicate 
that surveying with terrestrial laser scanning is significantly more cost-efficient per square 
meter than vehicle-based systems, while simultaneously providing richer geometric 
information than low-cost 2D imaging methods.
The segmentation results demonstrated high accuracy (>92%) even in unseen test 
areas, affirming the effectiveness of the neural network approach in extracting relevant 
infrastructure features from raw point cloud data. However, challenges remain—
particularly at the boundaries of segmented classes—where label ambiguity and point 
cloud noise can impair performance. The subsequent damage detection and classification 
processes effectively differentiated between root-induced and construction-related 
damage, achieving high detection overlap (95.9%) and classification accuracy (95.15%).
The results presented in the paper demonstrate that the proposed method achieves high 
accuracy in damage detection in the test area, particularly in detecting root-induced 
damage. Another notable aspect is the integration of the methodology with BIM systems, 
which supports more effective predictive maintenance planning. By classifying and 
documenting both root-induced surface damage and construction joints, the approach 

Figure 6: 
Qualitative results of 
damage classification. 
Root-induced damage 
is depicted in red, while 
construction joints 
are shown in green. 
Source: own figure.

Abbildung 6: 
Qualitative 
Ergebnisse der 
Schadensklassifikation. 
Wurzelschäden sind 
in Rot dargestellt, 
während Baufugen 
in Grün dargestellt 
werden. 
Quelle: eigene 
Abbildung.

Fig. 6
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facilitates the development of a holistic digital representation of a facility, including 
maintenance-relevant information for outdoor infrastructure. Overall, the findings suggest 
that the proposed methodology constitutes a promising and cost-effective solution for 
infrastructure monitoring.
Nonetheless, there remains potential for improvement, especially in refining the 
segmentation of complex surfaces, improving the detection of subtle construction-related 
damage, and extending the framework to accommodate a broader range of damage 
types. Despite the high overall accuracy, the segmentation process exhibited limitations, 
particularly in handling ambiguities at class boundaries—most notably between the 
classes “car”, “ground”, and “vegetation”. These issues are expected to be mitigated 
in future work through an expanded and more diverse dataset, which will provide the 
deep learning model with increased variability and improved generalization. Additional 
improvements will focus on extending the framework’s capabilities to include further 
damage types, such as those resulting from heavy mechanical wear or environmental 
effects like freeze-thaw cycles—an effort that will also benefit from a larger dataset. 
Furthermore, the damage detection component showed reduced sensitivity to subtle 
construction joints, including fine cracks and slight surface depressions, which the current 
approach struggles to detect. To address this, future developments will incorporate 
additional data types, such as image data, into the analysis pipeline. The inclusion of 
visual information is expected to enhance the detection and validation of fine cracks. 
Additionally, the current method of data collection—terrestrial laser scanning—is time-
consuming. The substitution of terrestrial scanners with drone-based surveys offers a 
promising alternative to reduce acquisition time and increase coverage; however, it may 
introduce additional sources of error like motion artifacts or positional inaccuracies that 
must be considered. Moreover, the application of semi-supervised learning techniques 
can help alleviate the annotation workload and enable better generalization across 
diverse surface types and environmental conditions.
While the Vienna International Airport parking lot provided a controlled environment for 
testing, the applicability of the proposed method to more safety-critical areas of airport 
infrastructure—particularly runways and taxiways, where surface integrity is essential for 
safe aircraft operations—remains a subject for future investigation. Beyond the aviation 
domain, the methodology can be adapted for a wide range of outdoor infrastructure 
applications, including bridges, building exteriors, and industrial sites. This versatility, 
in combination with the system’s cost-efficiency, positions the framework as a valuable 
instrument for proactive infrastructure monitoring and maintenance.
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