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Predictive maintenance in infrastructure: Utilizing
3D point clouds for efficient damage detection

Christina Petschnigg, Alexander Pamler, Kazim Onur Arisan, Jan Morten Loés, Torsten Ullrich

ABSTRACT KEYWORDS

Growing urbanization is driving the demand for infrastructure such as parking lots, roads, and bicycle lanes. % 3D point cloud
While green spaces and trees are often integrated into these development projects to mitigate negative
climate impacts, they can cause root-related damage that poses safety risks and requires costly monitoring.
Public road networks are typically inspected with advanced but expensive surveillance vehicles that are too > predictive
costly for private applications, leaving private infrastructure such as parking lots, private roads, and storage maintenance
areas without comparable solutions. Thus, this paper presents a methodology for detecting and classifying
damage areas in 3D point clouds of parking lots, distinguishing root-related damage from construction joints
using a combination of deep learning and classical statistics. The approach is evaluated on data from Vienna
International Airport and validated against manually labeled ground truth data. Results show that accurate
localization and classification of damage is feasible using only a single laser scanner, providing a cost-
effective alternative to conventional monitoring. Moreover, the method facilitates predictive maintenance by
automatically detecting damage and enabling integration into Building Information Modeling software.

> tree roots

> damage detection

Vorausschauende Instandhaltung von Infrastruktur: Effiziente Schadensdetektion
mithilfe von 3D-Punktwolken

ZUSAMMENFASSUNG

Die wachsende Urbanisierung erhéht die Nachfrage nach Infrastruktur wie Parkplédtzen, StralSen und
Radwegen. Griinflichen und Bdume werden héufig in diese Entwicklungsprojekte integriert, um negative
Effekte des Klimawandels abzumildern. Allerdings kénnen diese wurzelbedingte Schéden verursachen, die
Sicherheitsrisiken bergen und eine kostenintensive Uberwachung erfordern. Das dffentliche StraBennetz
wird in der Regel mit fortschrittlichen, jedoch teuren Uberwachungsfahrzeugen inspiziert die fiir private
Infrastruktur wie Parkplétze, PrivatstraBen und Lagerflichen zu kostspielig sind. Daher wird in diesem Paper
eine Methodik zur Erkennung und Klassifizierung von Schédden in 3D Punktwolken von Parkplétzen vorgestellt,
bei der wurzelbedingte Schéden mithilfe einer Kombination aus Deep Learning und klassischer Statistik von
Baufugen unterschieden werden. Der Ansatz wird anhand von Daten des Flughafens Wien evaluiert und
mit manuell annotierten Ground-Truth-Daten validiert. Die Ergebnisse zeigen, dass eine prézise Lokalisierung
und Klassifizierung von Schdden mit einem einzelnen Laserscanner méglich ist, was eine kostengiinstige
Alternative zu herkémmlichen Monitoringverfahren darstellt. Dariiber hinaus unterstiitzt die vorgeschlagene
Methode Predictive-Maintenance-MalBnahmen, indem Schéden automatisch erkannt und in Building
Information Modeling-Software integriert werden kénnen.

INTRODUCTION

Since 2008, more than half of the global population lives in urban areas, a proportion
that is expected to increase to 68% by 2050 [1]. While urbanization drives economic and
social progress, it also increases soil sealing, impacting the environment and society [2].
The expansion of impervious surfaces — such as roads, buildings, and parking lots — at
the expense of green and open spaces is a global trend with profound environmental
consequences. It exacerbates the effects of heavy rainfall by contributing to flooding
and also intensifies the urban heat island effect. A common strategy to mitigate these
effectsisincorporating green spaces, especially trees, into sealed areas, as they promote
cooling [3], water evaporation, air purification [4], and hydrological protection [5]. While
essential for addressing climate change-related challenges, plant and root growth can
damage infrastructure, causing cracks or bulges in surfaces. Consequently, systematic
infrastructure monitoring and inspection are essential for early damage detection
and predictive maintenance, enabling cost-effective repairs, reducing accident risks,
extending infrastructure lifespan, and enhancing public safety. However, these monitoring
and inspection efforts demand substantial time and financial resources frominfrastructure
operators.
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A significant portion of infrastructure, including parking lots, roads, and bike lanes, is
publicly owned and is monitored using expensive surveillance vehicles. While effective
for inspections, their high cost makes them inaccessible to private sector organizations,
businesses, and operators of commercial or private infrastructure who are responsible
for managing and maintaining private roads, parking lots, and other outdoor spaces.
Consequently, inspecting infrastructure in these settings presents a more significant
challenge. Recent studies on low-cost road and infrastructure inspections mainly utilize
two-dimensional (2D) images, as they are cost-effective and easily captured with readily
available devices such as smartphones [6]. However, 2D imagery lacks depth information,
which limits its ability to capture detailed geometric characteristics of surface conditions.
In contrast, three-dimensional (3D) point clouds provide rich geometric and color
information, enabling a more comprehensive analysis, which not only improves the
detection and classification of surface anomalies but also allows for a more accurate
assessment of their extent. Consequently, 3D data support more informed decision-making
by enabling the prioritization of maintenance tasks based on the geometric severity of the
detected damage. For instance, pavement damage inspection using 3D point clouds is
described in [7] and [8].
Against this background, our paper presents a cost-effective methodology for detecting
and classifying damage to parking infrastructure using 3D point cloud data, acquired using
a terrestrial laser scanner instead of a full surveillance vehicle. The proposed approach
combines deep learning with classical statistical techniques to distinguish between
damage caused by root growth and construction joints. Specifically, a PointNet-based [9]
neural network is applied to segment the parking lot into relevant and non-relevant points.
Damage is then identified at the relevant points through the geometric approximation of
the ground surface and the classification and directional analysis of damage. Since the
damage detection takes place within a georeferenced 3D point cloud, the results can be
integrated directly into Building Information Modeling (BIM) systems, enabling efficient
planning and management of maintenance activities. In summary, our contributions are:
> Framework: We propose a common framework for detecting, documenting, and
classifying infrastructure damage using georeferenced 3D point cloud data. The
framework segments relevant surface points and distinguishes damage caused by root
growth from construction joints. This offers a more cost-efficient solution compared to
the use of surveillance vehicles and delivers greater accuracy than conventional 2D
image-based monitoring methods.
> Experiment: We assess the accuracy and completeness of damage detection by
comparing the model’s output with manually annotated ground truth data, using a real-
world parking lot at Vienna International Airport as a test site.

MATERIALS AND METHODS

Data Collection and Pre-Processing

The study was conducted in Parking Lot D at Vienna International Airport, which spans
an area of approximately 13,000 m? and is depicted in Figure 1. Data acquisition was
performed using the terrestrial laser scanner VZ-400i (Riegl International GmbH, Vienna,
Austria). For accurate georeferencing, existing control points in the surrounding area
were additionally captured. In total, 98 scan positions were recorded and subsequently
processed using RiISCAN PRO software (RIEGL Deutschland Vertriebsgesellschaft mbH,
Gilching bei Miinchen, Germany) . The raw point cloud data were filtered to exclude points
with reflectivity values below -25 dB or above 5 dB, as well as those with a deviation value
exceeding 15. Low reflectivity often results from weak signal returns on dark or absorbent
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surfaces, whereas high reflectivity may indicate sensor artifacts. Elevated deviation
values typically reflect measurement noise. Filtering these outliers improves geometric
accuracy for subsequent analysis and reliability. The individual scan positions were then
registered relative to each other to align and merge them into a unified coordinate system.
The resulting point cloud was colorized using RGB values extracted from images taken by
the scanner’s internal camera. Movable objects, such as vehicles and pedestrians, were
removed by the software, while residual noise was manually eliminated using the Terrain
Filter tool.

The consolidated point cloud with a resolution of 1 cm was imported into the software
program CloudCompare [10] for further refinement. Statistical outlier removal was
conducted to further eliminate noise points that compromise the integrity of the dataset.
Subsequently, the point cloud was manually annotated to assign each point to one of the
classes: ground, tree, low vegetation, and car. Figure 2 presents the point cloud of the test
site at Vienna International Airport in two formats: one representing the cleaned data and
the other depicting the class labels.

Model Implementation and Training

Our methodology comprises three primary steps: 1) segmentation of the point cloud to
identify relevant features (such as ground, vegetation, and trees) for further analysis,
while excluding irrelevant points (such as vehicles); 2) tree documentation and damage
detection, which leverages geometric features such as positive and negative protrusions

Figure 1:

Parking Lot D at Vienna
International Airport.
Source: own figure.

Figure 2:

Cleaned (left) and
labeled (right) point
cloud of the test site at
the Vienna International
Airport. Source: own
figure.
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to identify surface anomalies; and 3) classification and documentation of the identified
areas of damage, distinguishing between those caused by root growth and construction
joints. Future research will extend this analysis to include additional damage types,
such as those induced by heavy usage or freeze-thaw cycles, including potholes and
subsidence.

Segmentation

In the first step, we employ deep learning techniques for automatic point cloud
segmentation. Specifically, we adopt a PointNet-based approach[9], which processes raw
point cloud data directly [11], eliminating the need for intermediate steps like voxelization
[12] or 2D image conversion [13]. To improve computational efficiency, the point cloud
is first down-sampled using uniform grid sampling and then split into training (~70%),
validation (=20%), and testing (=10%) sets. The PointNet-based model is implemented
using Python’s PyTorch framework [14] and is trained for 100 epochs on a GeForce RTX
3090 GPU (NVIDIA Corporation, Santa Clara, CA, USA) for parameter optimization. Post-
inference inaccuracies, which primarily result from limited training data and labeling
noise, are reduced using a multi-step refinement of car and vegetation detection. Initially,
the inference results are projected onto a 2D bird's-eye view of the scene, where the
respective objects are delineated through density-based clustering. The boundaries of
these regions are subsequently refined, and the corrected segmentations are reprojected
into the 3D point cloud to enhance spatial accuracy. Subsequently, all detected vehicles
are removed from the dataset, as they are not relevant for assessing ground surface
damage.

Damage Detection

In the second step, tree positions are extracted from the segmented “tree” point cloud.
Individual trees are identified and isolated using density-based clustering. The position of
each tree is defined as the ground-level coordinate located at the center of the tree stem.
This georeferenced information can be directly integrated into a BIM system, which is
increasingly important in a smart facility planning context, where accurate, up-to-date
models of both built and natural assets are essential. Such integration helps in assessing
risks related to root intrusion, visibility obstructions, and vulnerability to storms.

The segmented point clouds corresponding to the “ground” and “vegetation” classes are
furtheranalyzed. The ground point clouds are divided into disjoint square regions for ground
plane approximation. Within each subdivision, a fourth-degree polynomial regression
model is applied to capture nonlinearities in the data, such as surface irregularities. To
ensure robustness against outliers, a RANSAC (Random Sample Consensus) regressor is
employed. This process generates a fourth-degree polynomial function for each square
segment of the ground, which models its complex and uneven surface. The resulting
surfaces are then connected using bicubic interpolation, providing a smooth and
continuous approximation of the entire ground surface. This approximation facilitates the
identification of damage, with root-induced defects manifesting as positive protrusions
and construction joints corresponding to either positive or negative protrusions. These
deviations are identified by comparing the point cloud data to the approximated ground
surface.

Damage Classification

In the third step, we differentiate whether the identified areas of damage are caused
by tree root growth or construction. This involves a detailed analysis of the damage
structure. Initially, individual damage areas are delineated from one another. The point
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cloud is then converted into a graph representation using a k-d tree, which is a data
structure optimized for efficient nearest-neighbor searches and partitioning of points in
k-dimensional spaces. Each connected component in the point cloud is initially assigned
to a single area of damage. However, due to the inherent incompleteness of point clouds,
collinear areas of damage are merged, as missing points often cause discontinuities that
actually represent one single contiguous area of damage. After this merging process,
areas of damage are classified based on their geometric properties. Root-induced
damage tends to be curved and aligns with the direction of the recorded tree positions,
distinguishing them from linear construction joints, which are typically straight. Other
damage types, such as potholes, were not present in the test data.

RESULTS

As outlined in the previous section, the proposed infrastructure monitoring framework
consists of three main stages: segmentation of the point cloud, documentation of
trees and detection of damage, and subsequent damage classification. To ensure a
comprehensive evaluation of the framework’s effectiveness, each stage is assessed
independently. As previously mentioned, the evaluation is conducted on Parking Lot D at
Vienna International Airport.

Segmentation Results

Training and optimizing the PointNet-based neural network over 100 epochs on the training
set—which includes approximately two rows of the parking area—yielded a point-wise
accuracy of 97.16% on the training data and 95.32% on the validation data. Evaluation of
the unseen test area, which corresponds to a short parking row, resulted in a point-wise
accuracy of 92.61%. Table 1 summarizes the corresponding per-class accuracies and
the mean Intersection over Union (mloU) for each class. Qualitative visualization of the
segmentation results is provided in Figure 3. The model demonstrated a strong ability to
distinguish between the predefined classes, with particularly high separability observed
for the “ground” and “tree” classes. However, due to the limited extent of the training
data and some labeling noise in the “vegetation” and “ground” classes, the segmentation
exhibited inaccuracies at class boundaries, especially between the classes “car”,
“ground”, and “vegetation”. These boundary ambiguities were subsequently mitigated
by incorporating geometric features of the point cloud, as described in the previous
section, resulting in the refined segmentation illustrated in Figure 4 and yielding an overall
classification accuracy of 97.74% on the test set.

After Segmentation After refinement
Class Class Accuracy loU Class Accuracy loU
Ground 0.944 0.925 0.999 0.978
Tree 0.943 0.921 0.989 0.963
Vegetation 0.726 0.644 0.739 0.704
Car 0.824 0.602 0917 0.916

Damage Detection

As tree detection is performed through straightforward density-based clustering on a
clearly distinguishable point cloud class, it was considered a trivial task in this context

Table 1:

Class accuracy
and class loU after
segmentation and
refinement.
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and therefore not subject to quantitative evaluation.

The previously described method, which detects damage by analyzing deviations between
the point cloud and the approximated ground surface, effectively localized damaged
regions, achieving a mutual overlap of 95.9% with manually annotated ground truth data.
The overlap was calculated by measuring nearest-neighbor distances between points
in both point clouds, with overlap defined as points within a distance threshold set at
1% of the bounding box diagonal. The mutual overlap ratio was computed by averaging
the directional overlaps from each cloud to the other. Figure 5 presents a comparison
between manually labeled damage and examples of damage identified by the system.
Overlapping points are shown in green, while red and blue points represent those unique
to the ground truth and system output, respectively. Although the overall overlap was
high, our method occasionally failed to detect fine construction joints characterized by
subtle negative surface deviations. In contrast, it demonstrated high sensitivity to positive
protrusions, detecting root-induced damage with high accuracy.
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Figure 3:

Qualitative segmenta-
tion results on the test
data set. Source:

own figure.

Figure 4: Qualitative
segmentation results on
the test data set after
refinement. Source:
own figure.

Figure 5:

Comparison of ground
truth and detected
damage. Overlapping
points are shown in
green, while red and
blue indicate points
unique to the ground
truth and system output,
respectively. Full point
cloud (top), damage
only (bottom). Source:
own figure.
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Damage Classification

Subsequently, individual areas of damage were classified based on their geometric
characteristics to differentiate between curved, root-induced damage and the typically
linear patterns associated with construction-related damage. Figure 6 illustrates the
qualitative results of the classified damage, where root-induced damage is visualized in
red and construction joints in green. The overall classification achieved an accuracy of
95.15%. The accuracy was determined by establishing spatial correspondence between
the predicted and ground truth point clouds. This was achieved by identifying the nearest
neighbor in the ground truth for each pointin the predicted dataset using a k-d tree. Since
the point clouds differed in sampling density and exhibited spatial deviations between
predictions and annotations, they also differed in the number of points, making one-to-
one correspondence infeasible. Consequently, the nearest-neighbor approach offered a
robust solution for establishing spatial correspondence and evaluating geometric overlap
between the two datasets.

DISCUSSION AND CONCLUSION

This study presents a low-cost and scalable methodology for detecting and classifying
surface-level infrastructure damage using 3D point cloud data. Our framework represents
a significant advancement in making infrastructure monitoring more accessible. By
eliminating the need for expensive surveillance vehicles and relying instead on terrestrial
laser scanners and point cloud processing, it enables smaller organizations and private
entities to conduct reliable, automated inspections. This has the potential to improve
predictive and preventive maintenance efforts as well as safety, especially in private
parking lots, campuses, and commercial zones. Moreover, preliminary estimates indicate
thatsurveying with terrestrial laser scanning is significantly more cost-efficient per square
meter than vehicle-based systems, while simultaneously providing richer geometric
information than low-cost 2D imaging methods.

The segmentation results demonstrated high accuracy (>92%) even in unseen test
areas, affirming the effectiveness of the neural network approach in extracting relevant
infrastructure features from raw point cloud data. However, challenges remain—
particularly at the boundaries of segmented classes—where label ambiguity and point
cloud noise canimpair performance. The subsequent damage detection and classification
processes effectively differentiated between root-induced and construction-related
damage, achieving high detection overlap (95.9%) and classification accuracy (95.15%).
The results presented in the paper demonstrate that the proposed method achieves high
accuracy in damage detection in the test area, particularly in detecting root-induced
damage. Another notable aspect is the integration of the methodology with BIM systems,
which supports more effective predictive maintenance planning. By classifying and
documenting both root-induced surface damage and construction joints, the approach

Figure 6:

Qualitative results of
damage classification.
Root-induced damage
is depicted in red, while
construction joints

are shown in green.
Source: own figure.
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facilitates the development of a holistic digital representation of a facility, including
maintenance-relevantinformation for outdoor infrastructure. Overall, the findings suggest
that the proposed methodology constitutes a promising and cost-effective solution for
infrastructure monitoring.

Nonetheless, there remains potential for improvement, especially in refining the
segmentation of complex surfaces, improving the detection of subtle construction-related
damage, and extending the framework to accommodate a broader range of damage
types. Despite the high overall accuracy, the segmentation process exhibited limitations,
particularly in handling ambiguities at class boundaries—most notably between the
classes “car”, “ground”, and “vegetation”. These issues are expected to be mitigated
in future work through an expanded and more diverse dataset, which will provide the
deep learning model with increased variability and improved generalization. Additional
improvements will focus on extending the framework’s capabilities to include further
damage types, such as those resulting from heavy mechanical wear or environmental
effects like freeze-thaw cycles—an effort that will also benefit from a larger dataset.
Furthermore, the damage detection component showed reduced sensitivity to subtle
construction joints, including fine cracks and slight surface depressions, whichthe current
approach struggles to detect. To address this, future developments will incorporate
additional data types, such as image data, into the analysis pipeline. The inclusion of
visual information is expected to enhance the detection and validation of fine cracks.
Additionally, the current method of data collection—terrestrial laser scanning—is time-
consuming. The substitution of terrestrial scanners with drone-based surveys offers a
promising alternative to reduce acquisition time and increase coverage; however, it may
introduce additional sources of error like motion artifacts or positional inaccuracies that
must be considered. Moreover, the application of semi-supervised learning techniques
can help alleviate the annotation workload and enable better generalization across
diverse surface types and environmental conditions.

While the Vienna International Airport parking lot provided a controlled environment for
testing, the applicability of the proposed method to more safety-critical areas of airport
infrastructure—particularly runways and taxiways, where surface integrity is essential for
safe aircraft operations—remains a subject for future investigation. Beyond the aviation
domain, the methodology can be adapted for a wide range of outdoor infrastructure
applications, including bridges, building exteriors, and industrial sites. This versatility,
in combination with the system’s cost-efficiency, positions the framework as a valuable
instrument for proactive infrastructure monitoring and maintenance.
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