Deep-learning based population monitoring of the endangered plant species Gladiolus illyricus: lessons learned for implementation of a technology-based biodiversity monitoring approach
DOI:
https://doi.org/10.71911/cii-p3-nt-2025211Keywords:
Deep-learning, biodiversity- monitoring, Gladiolus illyricus, flower detectionAbstract
New technologies offer promising possibilities in biodiversity monitoring to increase standardization of sampling methods and improve cost efficiency. Among the former, uncrewed aerial systems (UAS) are widely used today to produce orthomosaics of a particular area. At the same time, computer-intensive methods for automated object detection within images have increased accordingly. While they are widely used in science, applied nature conservation makes little use of these methods. The current study aimed to test the applicability of UAS in combination with a deep-learning based object detection workflow in Schütt-Graschelitzen, a small-scale Natura 2000 protected area near Villach, Austria. For this purpose, we trained a YOLO_v8 algorithm with flowers of Gladiolus illyricus from an orthomosaic. The orthomosaic was split into about 1000 equally sized tiles with 80 tiles used for training and 20 tiles used for validation. For ground truthing, the individual inflorescences were counted manually. Our main findings indicated moderate model performance with the training and validation dataset and also with new data. Moderate – rather than strong – performance is likely a result of too little training data. While object detection worked considerably well, background revealed too high variability, making reliable classifications challenging. Comparing the different work steps (without UAS mission) suggests that creating a representative training dataset is the most time-intensive part of the workflow. For small areas and a single survey, this is likely not efficient compared to traditional field sampling methods. However, its efficiency increases with each resurvey event, as pretrained deep-learning models developed during prior monitoring cycles can be reused. This can reduce the amount of training data required in a subsequent survey. Additionally, UAS- and deep-learning based monitoring can help at sites with high sensitivity to trampling and favors large study areas, as its efficiency increases with the sample size area.
References
A. Balmford, R. E. Green, and M. Jenkins, “Measuring the changing state of nature,” Trends Ecol. Evol., vol. 18, no. 7, pp. 326–330, 2003. doi: 10.1016/S0169-5347(03)00067-3
D. Gonçalves-Souza, P. H. Verburg, and R. Dobrovolski, “Habitat loss, extinction predictability and conservation efforts in the terrestrial ecoregions,” Biol. Conserv., vol. 246, p. 108579, Jun. 2020. doi: 10.1016/j.biocon.2020.108579
L. Maiorano, A. Falcucci, E. O. Garton, and L. Boitani, “Contribution of the Natura 2000 network to biodiversity conservation in Italy,” Conserv. Biol., vol. 21, no. 6, pp. 1433–1444, 2007. doi: 10.1111/j.1523-1739.2007.00831.x
F. Pedrotti, “Types of vegetation maps,” in Plant and Vegetation Mapping. 2013, pp. 103–181. doi: 10.1007/978-3-642-30235-0_6
C. Corbane, S. Lang, K. Pipkins, S. Alleaume, M. Deshayes, V. E. García Millán, et al., “Remote sensing for mapping natural habitats and their conservation status—New opportunities and challenges,” Int. J. Appl. Earth Obs. Geoinf., vol. 37, pp. 7–16, May 2015. doi: 10.1016/j.jag.2014.11.005
C. Tockner, M. S. Lorang, and J. A. Stanford, “River flood plains are model ecosystems to test general hydrogeomorphic and ecological concepts,” River Res. Appl., vol. 26, no. 1, pp. 76–86, 2010. doi: 10.1002/rra.1328
S. T. A. Pickett, J. Wu, and M. L. Cadenasso, “Patch dynamics and the ecology of disturbed ground: A framework for synthesis,” in Ecosystems of Disturbed Ground. Amsterdam, 1999, pp. 707–722.
L. Petersen, C. K. Dahl, and K. H. Esbensen, “Representative mass reduction in sampling—A critical survey of techniques and hardware,” Chemom. Intell. Lab. Syst., vol. 74, no. 1, pp. 95–114, Nov. 2004. doi: 10.1016/j.chemolab.2004.03.020
P. Li, Q. Wang, T. Endo, X. Zhao, and Y. Kakubari, “Soil organic carbon stock is closely related to aboveground vegetation properties in cold-temperate mountainous forests,” Geoderma, vol. 154, nos. 3–4, pp. 407–415, Jan. 2010. doi: 10.1016/j.geoderma.2009.11.023
H. Zhang, C. Zhan, J. Xia, and P. J. F. Yeh, “Responses of vegetation to changes in terrestrial water storage and temperature in global mountainous regions,” Sci. Total Environ., vol. 851, p. 158416, Dec. 2022. doi: 10.1016/j.scitotenv.2022.158416
M. Fontaine, R. Aerts, K. Özkan, A. Mert, S. Gülsoy, H. Süel, et al., “Elevation and exposition rather than soil types determine communities and site suitability in Mediterranean mountain forests of southern Anatolia, Turkey,” For. Ecol. Manage., vol. 247, nos. 1–3, pp. 18–25, Aug. 2007. doi: 10.1016/j.foreco.2007.04.021
A. C. Edwards, R. Scalenghe, and M. Freppaz, “Changes in the seasonal snow cover of alpine regions and its effect on soil processes: A review,” Quat. Int., vols. 162–163, pp. 172–181, Mar. 2007. doi: 10.1016/j.quaint.2006.10.027
Y. Qi, H. Wang, X. Ma, J. Zhang, and R. Yang, “Relationship between vegetation phenology and snow cover changes during 2001–2018 in the Qilian Mountains,” Ecol. Indic., vol. 133, p. 108351, Dec. 2021. doi: 10.1016/j.ecolind.2021.108351
R. Benavides, A. Escudero, L. Coll, P. Ferrandis, R. Ogaya, F. Gouriveau, et al., “Recruitment patterns of four tree species along elevation gradients in Mediterranean mountains: Not only climate matters,” For. Ecol. Manage., vol. 360, pp. 287–296, Jan. 2016. doi: 10.1016/j.foreco.2015.10.043
L. D. Estes, P. R. Reillo, A. G. Mwangi, G. S. Okin, and H. H. Shugart, “Remote sensing of structural complexity indices for habitat and species distribution modeling,” Remote Sens. Environ., vol. 114, no. 4, pp. 792–804, Apr. 2010. doi: 10.1016/j.rse.2009.11.016
J. Vanden Borre, D. Paelinckx, C. A. Mücher, L. Kooistra, B. Haest, G. De Blust, et al., “Integrating remote sensing in Natura 2000 habitat monitoring: Prospects on the way forward,” J. Nat. Conserv., vol. 19, no. 2, pp. 116–125, May 2011. doi: 10.1016/j.jnc.2010.07.003
A. Viña, S. Bearer, H. Zhang, Z. Ouyang, and J. Liu, “Evaluating MODIS data for mapping wildlife habitat distribution,” Remote Sens. Environ., vol. 112, no. 5, pp. 2160–2169, May 2008. doi: 10.1016/j.rse.2007.09.012
S. Weiers, M. Bock, M. Wissen, and G. Rossner, “Mapping and indicator approaches for the assessment of habitats at different scales using remote sensing and GIS methods,” Landsc. Urban Plan., vol. 67, nos. 1–4, pp. 43–65, Mar. 2004. doi: 10.1016/S0169-2046(03)00028-8
F. Betz, M. Lauermann, and G. Egger, “Biogeomorphology from space: Analyzing the dynamic interactions between hydromorphology and vegetation along the Naryn River in Kyrgyzstan based on dense satellite time series,” Remote Sens. Environ., vol. 299, p. 113890, Dec. 2023. doi: 10.1016/j.rse.2023.113890
F. Betz, M. Lauermann, and B. Cyffka, “Geomorphological characterization of rivers using virtual globes and digital elevation data: A case study from the Naryn River in Kyrgyzstan,” Int. J. Geoinformatics, vol. 17, no. 1, pp. 47–55, 2021. doi: 10.52939/ijg.v17i1.1707
R. C. Grecchi, R. Beuchle, Y. E. Shimabukuro, L. E. O. C. Aragão, E. Arai, D. Simonetti, et al., “An integrated remote sensing and GIS approach for monitoring areas affected by selective logging: A case study in northern Mato Grosso, Brazilian Amazon,” Int. J. Appl. Earth Obs. Geoinf., vol. 61, pp. 70–80, Sep. 2017. doi: 10.1016/j.jag.2017.05.001
I. D. Thompson, M. R. Guariguata, K. Okabe, C. Bahamondez, R. Nasi, V. Heymell, et al., “An operational framework for defining and monitoring forest degradation,” Ecol. Soc., vol. 18, no. 2, Art. no. 20, 2013. doi: 10.5751/ES-05443-180220
R. H. Fraser, I. Olthof, and D. Pouliot, “Monitoring land cover change and ecological integrity in Canada’s national parks,” Remote Sens. Environ., vol. 113, no. 7, pp. 1397–1409, Jul. 2009. doi: 10.1016/j.rse.2008.06.019
J. T. Kerr and M. Ostrovsky, “From space to species: Ecological applications for remote sensing,” Trends Ecol. Evol., vol. 18, no. 6, pp. 299–305, 2003. doi: 10.1016/S0169-5347(03)00071-5
J. J. Nossin, “Slope visibility and shadows in side-loop SPOT imagery,” ISPRS J. Photogramm. Remote Sens., vol. 46, no. 3, pp. 133–146, Jun. 1991. doi: 10.1016/0924-2716(91)90031-P
I. M. S. Eddy, S. E. Gergel, N. C. Coops, G. M. Henebry, J. Levine, H. Zerriffi, et al., “Integrating remote sensing and local ecological knowledge to monitor rangeland dynamics,” Ecol. Indic., vol. 82, pp. 106–116, Nov. 2017. doi: 10.1016/j.ecolind.2017.06.033
Z. Xie, S. R. Phinn, E. T. Game, D. J. Pannell, R. J. Hobbs, P. R. Briggs, et al., “Using Landsat observations (1988–2017) and Google Earth Engine to detect vegetation cover changes in rangelands—A first step towards identifying degraded lands for conservation,” Remote Sens. Environ., vol. 232, p. 111317, Oct. 2019. doi: 10.1016/j.rse.2019.111317
J. Dong, X. Xiao, M. A. Menarguez, G. Zhang, Y. Qin, D. Thau, et al., “Mapping paddy rice planting area in northeastern Asia with Landsat 8 images, phenology-based algorithm and Google Earth Engine,” Remote Sens. Environ., vol. 185, pp. 142–154, Nov. 2016. doi: 10.1016/j.rse.2016.02.016
A. Retallack, G. Finlayson, B. Ostendorf, K. Clarke, and M. Lewis, “Remote sensing for monitoring rangeland condition: Current status and development of methods,” Environ. Sustain. Indic., vol. 19, p. 100285, Sep. 2023. doi: 10.1016/j.indic.2023.100285
S. Yousefi, M. Avand, P. Yariyan, H. R. Pourghasemi, S. Keesstra, S. Tavangar, et al., “A novel GIS-based ensemble technique for rangeland downward trend mapping as an ecological indicator change,” Ecol. Indic., vol. 117, p. 106591, Oct. 2020. doi: 10.1016/j.ecolind.2020.106591
W. Mücke, A. Zlinsky, M. Hollaus, and N. Pfeifer, “Towards operative habitat mapping using airborne laser scanning—The Changehabits2 project,” in Proc. ForestSat 2012 Conf., 2012.
X. Lyu, X. Li, D. Dang, H. Dou, X. Xuan, S. Liu, et al., “A new method for grassland degradation monitoring by vegetation species composition using hyperspectral remote sensing,” Ecol. Indic., vol. 114, p. 106310, Jul. 2020. doi: 10.1016/j.ecolind.2020.106310
L. Gao, X. Wang, B. A. Johnson, Q. Tian, Y. Wang, J. Verrelst, et al., “Remote sensing algorithms for estimation of fractional vegetation cover using pure vegetation index values: A review,” ISPRS J. Photogramm. Remote Sens., vol. 159, pp. 364–377, Jan. 2020. doi: 10.1016/j.isprsjprs.2019.11.018
Y. Chen, J. P. Guerschman, Z. Cheng, and L. Guo, “Remote sensing for vegetation monitoring in carbon capture storage regions: A review,” Appl. Energy, vol. 240, pp. 312–326, Apr. 2019. doi: 10.1016/j.apenergy.2019.02.027
V. Lawley, M. Lewis, K. Clarke, and B. Ostendorf, “Site-based and remote sensing methods for monitoring indicators of vegetation condition: An Australian review,” Ecol. Indic., vol. 60, pp. 1273–1283, Jan. 2016. doi: 10.1016/j.ecolind.2015.03.021
C. Gómez, J. C. White, and M. A. Wulder, “Optical remotely sensed time-series data for land cover classification: A review,” ISPRS J. Photogramm. Remote Sens., vol. 116, pp. 55–72, Jun. 2016. doi: 10.1016/j.isprsjprs.2016.03.008
G. le Maire, C. Marsden, Y. Nouvellon, C. Grinand, R. Hakamada, J.-L. Stape, et al., “MODIS NDVI time-series allow the monitoring of Eucalyptus plantation biomass,” Remote Sens. Environ., vol. 115, no. 10, pp. 2613–2625, Oct. 2011. doi: 10.1016/j.rse.2011.05.017
Z. Xiao, S. Liang, J. Wang, B. Jiang, and X. Li, “Real-time retrieval of leaf area index from MODIS time-series data,” Remote Sens. Environ., vol. 115, no. 1, pp. 97–106, Jan. 2011. doi: 10.1016/j.rse.2010.08.009
N. Mueller, A. Lewis, D. Roberts, S. Ring, R. Melrose, J. Sixsmith, et al., “Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia,” Remote Sens. Environ., vol. 174, pp. 341–352, Mar. 2016. doi: 10.1016/j.rse.2015.11.003
D. K. Bolton, J. M. Gray, E. K. Melaas, M. Moon, L. Eklundh, and M. A. Friedl, “Continental-scale land surface phenology from harmonized Landsat 8 and Sentinel-2 imagery,” Remote Sens. Environ., vol. 240, p. 111685, Apr. 2020. doi: 10.1016/j.rse.2020.111685
K. Wang, S. E. Franklin, X. Guo, and M. Cattet, “Remote sensing of ecology, biodiversity and conservation: A review from the perspective of remote sensing specialists,” Sensors, vol. 10, no. 11, pp. 9647–9667, 2010. doi: 10.3390/s101109647
N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, and R. Moore, “Google Earth Engine: Planetary-scale geospatial analysis for everyone,” Remote Sens. Environ., vol. 202, pp. 18–27, Dec. 2017. doi: 10.1016/j.rse.2017.06.031
J. Padarian, B. Minasny, and A. B. McBratney, “Using Google’s cloud-based platform for digital soil mapping,” Comput. Geosci., vol. 83, pp. 80–88, Oct. 2015. doi: 10.1016/j.cageo.2015.06.023
I. Cârlan, B. A. Mihai, C. Nistor, and A. Große-Stoltenberg, “Identifying urban vegetation stress factors based on open-access remote sensing imagery and field observations,” Ecol. Inform., vol. 55, p. 101032, Jan. 2020. doi: 10.1016/j.ecoinf.2019.101032
X. Zhang, P. M. Treitz, D. Chen, C. Quan, L. Shi, and X. Li, “Mapping mangrove forests using multi-tidal remotely-sensed data and a decision-tree-based procedure,” Int. J. Appl. Earth Obs. Geoinf., vol. 62, pp. 201–214, Oct. 2017. doi: 10.1016/j.jag.2017.06.010
A. M. Dewan and Y. Yamaguchi, “Land use and land cover change in Greater Dhaka, Bangladesh: Using remote sensing to promote sustainable urbanization,” Appl. Geogr., vol. 29, no. 3, pp. 390–401, Jul. 2009. doi: 10.1016/j.apgeog.2008.12.005
Z. Dezső, J. Bartholy, R. Pongrácz, and Z. Barcza, “Analysis of land-use/land-cover change in the Carpathian region based on remote sensing techniques,” Phys. Chem. Earth Parts ABC, vol. 30, nos. 1–3, pp. 109–115, Jan. 2005. doi: 10.1016/j.pce.2004.08.017
J. Jiang and G. Tian, “Analysis of the impact of land use/land cover change on land surface temperature with remote sensing,” Procedia Environ. Sci., vol. 2, pp. 571–575, Jan. 2010. doi: 10.1016/j.proenv.2010.10.062
W. Zhan, Y. Chen, J. Zhou, J. Wang, W. Liu, J. Voogt, et al., “Disaggregation of remotely sensed land surface temperature: Literature survey, taxonomy, issues, and caveats,” Remote Sens. Environ., vol. 131, pp. 119–139, Apr. 2013. doi: 10.1016/j.rse.2012.12.014
I. Chawla, L. Karthikeyan, and A. K. Mishra, “A review of remote sensing applications for water security: Quantity, quality, and extremes,” J. Hydrol., vol. 585, p. 124826, Jun. 2020. doi: 10.1016/j.jhydrol.2020.124826
C. Giardino, G. Candiani, M. Bresciani, Z. Lee, S. Gagliano, and M. Pepe, “BOMBER: A tool for estimating water quality and bottom properties from remote sensing images,” Comput. Geosci., vol. 45, pp. 313–318, Aug. 2012. doi: 10.1016/j.cageo.2011.11.022
K. E. Sawaya, L. G. Olmanson, N. J. Heinert, P. L. Brezonik, and M. E. Bauer, “Extending satellite remote sensing to local scales: Land and water resource monitoring using high-resolution imagery,” Remote Sens. Environ., vol. 88, nos. 1–2, pp. 144–156, Nov. 2003. doi: 10.1016/j.rse.2003.04.006
C. E. Torgersen, R. N. Faux, B. A. McIntosh, N. J. Poage, and D. J. Norton, “Airborne thermal remote sensing for water temperature assessment in rivers and streams,” Remote Sens. Environ., vol. 76, no. 3, pp. 386–398, Jun. 2001. doi: 10.1016/S0034-4257(01)00186-9
S. R. Maniyath and K. Leena, “Rural built-up area extraction from satellite images using deep neural network,” AIP Conf. Proc., vol. 2914, no. 1, p. 050011, Dec. 2023. doi: 10.1063/5.0176046
Y. Tan, S. Xiong, and P. Yan, “Multi-branch convolutional neural network for built-up area extraction from remote sensing image,” Neurocomputing, vol. 396, pp. 358–374, Jul. 2020. doi: 10.1016/j.neucom.2018.09.106
T. T. Werner, A. Bebbington, and G. Gregory, “Assessing impacts of mining: Recent contributions from GIS and remote sensing,” Extr. Ind. Soc., vol. 6, no. 3, pp. 993–1012, Jul. 2019. doi: 10.1016/j.exis.2019.06.011
M. A. Wulder, J. G. Masek, W. B. Cohen, T. R. Loveland, and C. E. Woodcock, “Opening the archive: How free data has enabled the science and monitoring promise of Landsat,” Remote Sens. Environ., vol. 122, pp. 2–10, Jul. 2012. doi: 10.1016/j.rse.2012.01.010
M. A. Wulder, T. R. Loveland, D. P. Roy, C. J. Crawford, J. G. Masek, C. E. Woodcock, et al., “Current status of Landsat program, science, and applications,” Remote Sens. Environ., vol. 225, pp. 127–147, May 2019. doi: 10.1016/j.rse.2019.02.015
F. Vuolo, M. Neuwirth, M. Immitzer, C. Atzberger, and W. T. Ng, “How much does multi-temporal Sentinel-2 data improve crop type classification?” Int. J. Appl. Earth Obs. Geoinf., vol. 72, pp. 122–130, Oct. 2018. doi: 10.1016/j.jag.2018.06.007
R. Chastain, I. Housman, J. Goldstein, M. Finco, and K. Tenneson, “Empirical cross sensor comparison of Sentinel-2A and 2B MSI, Landsat-8 OLI, and Landsat-7 ETM+ top-of-atmosphere spectral characteristics over the conterminous United States,” Remote Sens. Environ., vol. 221, pp. 274–285, Feb. 2019. doi: 10.1016/j.rse.2018.11.012
S. Huang, L. Tang, J. P. Hupy, Y. Wang, and G. Shao, “A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing,” J. For. Res., vol. 32, no. 1, pp. 1–6, 2021. doi: 10.1007/s11676-020-01155-1
C. J. Tucker, “Red and photographic infrared linear combinations for monitoring vegetation,” Remote Sens. Environ., vol. 8, no. 2, pp. 127–150, May 1979. doi: 10.1016/0034-4257(79)90013-0
J. W. Rouse, Jr., R. H. Haas, D. W. Deering, J. A. Schell, and J. C. Harlan, “Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation,” Texas A&M Univ., College Station, TX, USA, Rep. NASA-CR-139243 PR-7 E74-10676, Nov. 1974. Accessed: Apr. 5, 2024. [Online]. Available: https://ntrs.nasa.gov/citations/19740022555
G. Egger, “Vegetationsökologische Untersuchungen Seebachtal, Nationalpark Hohe Tauern. Band 1: Vegetation und Standortsdynamik alpiner Lebensräume,” Institut für Ökologie und Umweltplanung for the Federal Ministry for the Environment, Youth and Family Affairs, Klagenfurt, Austria, 1996.
K. Krainer, Die Geologie der Hohen Tauern. Carinthia, Austria: Univ. Publishers, 1994.
S. Zhang, X. Li, M. Zhong, X. Zhu, and D. Cheng, “Learning k for kNN classification,” ACM Trans. Intell. Syst. Technol., vol. 8, no. 3, pp. 1–19, 2017.
L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001. doi: 10.1023/A:1010933404324
QGIS Association, “QGIS: A free and open source geographic information system,” 2024. Accessed: Apr. 5, 2024. [Online]. Available: https://qgis.org/
U. Tappeiner, E. Tasser, and G. Tappeiner, “Modelling vegetation patterns using natural and anthropogenic influence factors: Preliminary experience with a GIS-based model applied to an alpine area,” Ecol. Modell., vol. 113, nos. 1–3, pp. 225–237, Nov. 1998. doi: 10.1016/S0304-3800(98)00145-8
H. S. Fischer, “Simulating the distribution of landscape communities in an alpine landscape,” Coenoses, vol. 5, no. 1, pp. 37–43, 1990.
G. del Barrio, B. Alvera, J. Puigdefabregas, and C. Diez, “Response of high mountain landscape to topographic variables: Central Pyrenees,” Landsc. Ecol., vol. 12, no. 2, pp. 95–115, 1997. doi: 10.1007/BF02698210
B. Hoersch, G. Braun, and U. Schmidt, “Relation between landform and vegetation in alpine regions of Wallis, Switzerland: A multiscale remote sensing and GIS approach,” Comput. Environ. Urban Syst., vol. 26, nos. 2–3, pp. 113–139, Mar. 2002. doi: 10.1016/S0198-9715(01)00039-4
S. Jacek, “Landform characterization with geographic information systems,” Photogramm. Eng. Remote Sens., vol. 63, no. 2, pp. 183–191, 1997.
H. Kirchmeir, C. Keusch, and S. Lieb, Biotopkataster – Kartierrichtlinie. Naturrauminformationssystem Kärnten – NIS-K. Klagenfurt, Austria: E.C.O. Institute for Ecology, for the Office of the Carinthian Provincial Government, Dept. 8, 2018.
T. Ellmauer, V. Igel, H. Kudrnovsky, D. Moser, and D. Paternoster, Monitoring von Lebensraumtypen und Arten von gemeinschaftlicher Bedeutung in Österreich 2016–2018 … Teil: Kartieranleitungen. Vienna, Austria: Umweltbundesamt GmbH, 2019.
T. Ellmauer, Entwicklung von Kriterien, Indikatoren und Schwellenwerten zur Beurteilung des Erhaltungszustandes der Natura 2000-Schutzgüter. Band 3 …, 2005.
H. Yu, W. Ni, Z. Zhang, G. Sun, and Z. Zhang, “Regional forest mapping over mountainous areas in Northeast China using newly identified critical temporal features of Sentinel-1 backscattering,” Remote Sens., vol. 12, no. 9, p. 1485, 2020. doi: 10.3390/rs12091485
A. Dostálová, M. Hollaus, M. Milenković, and W. Wagner, “Forest area derivation from Sentinel-1 data,” ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., 2016.
J. N. Hansen, E. T. A. Mitchard, and S. King, “Assessing forest/non-forest separability using Sentinel-1 C-band synthetic aperture radar,” Remote Sens., vol. 12, no. 11, p. 1899, 2020. doi: 10.3390/rs12111899
D. Kopeć, D. Michalska-Hejduk, Ł. Sławik, T. Berezowski, and M. Borowski, “Application of multisensoral remote sensing data in the mapping of alkaline fens Natura 2000 habitat,” Ecol. Indic., vol. 70, pp. 196–208, Nov. 2016. doi: 10.1016/j.ecolind.2016.06.001
M. C. Alonso and J. A. Malpica, “Satellite imagery classification with LiDAR data,” Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., 2010.
A. Novelli, M. A. Aguilar, A. Nemmaoui, F. J. Aguilar, and E. Tarantino, “Performance evaluation of object-based greenhouse detection from Sentinel-2 MSI and Landsat 8 OLI data: A case study from Almería (Spain),” Int. J. Appl. Earth Obs. Geoinf., vol. 52, pp. 403–411, Oct. 2016. doi: 10.1016/j.jag.2016.07.011
D. Phiri, M. Simwanda, S. Salekin, V. R. Nyirenda, Y. Murayama, and M. Ranagalage, “Sentinel-2 data for land cover/use mapping: A review,” Remote Sens., vol. 12, no. 14, p. 2291, 2020. doi: 10.3390/rs12142291
A. Chakhar, D. Ortega-Terol, D. Hernandez-Lopez, R. Ballesteros, J. F. Ortega, and M. A. Moreno, “Assessing the accuracy of multiple classification algorithms for crop classification using Landsat-8 and Sentinel-2 data,” Remote Sens., vol. 12, no. 11, p. 1835, 2020. doi: 10.3390/rs12111735
M. Förster, A. Frick, H. Walentowski, and B. Kleinschmit, “Approaches to utilising QuickBird data for the monitoring of NATURA 2000 habitats,” Community Ecol., vol. 9, no. 2, pp. 155–168, 2008. doi: 10.1556/ComEc.9.2008.2.4
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Carinthia II / Part 3 - Carinthia Nature Tech

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.