Assessing forest structure with LiDAR: A method benchmark in the Rohrach Natural Forest Reserve
DOI:
https://doi.org/10.71911/cii-p3-nt-2025224Keywords:
forest structure analysis, Rohrach Natural Forest Reserve, method benchmarking, TLS, LiDAR, UAV, deadwood, large woody debris, growing stocks, beech forestAbstract
The Rohrach Natural Forest Reserve, located in the northern foothills of the Alps, serves as a long-term reference area for preserving and studying natural forest development. In this study, three methods for assessing forest structure—classical field-based inventory, terrestrial laser scanning (TLS), and drone-based LiDAR (UAV-LS)—were systematically compared. Building on an initial survey conducted in 1996, 44 sample plots were revisited and supplemented with high-resolution 3D measurements.
The results show that TLS provides highly accurate volume estimates that closely match those obtained through the classical inventory. The UAV-based approach enabled a comprehensive, area-wide survey of the 48-ha study site and yielded average growing stock values of 547 m³/ha—almost identical to those from the classical inventory (549 m³/ha). However, automated detection of lying deadwood using UAV data underestimated the volume by up to 50% compared to the line intersect method. Whether this discrepancy is due to the line intersect method’s assumption of randomly distributed logs being unsuitable for this site, or whether UAV-LS underestimates deadwood due to canopy shadowing or algorithmic omission of fine structures, requires further investigation.
The study also highlights persistent challenges in tree segmentation within steep or densely vegetated areas: overlapping crowns often result in misclassifications or undetected stems. While TLS continues to offer the highest geometric accuracy, UAV-LS provides the advantage of rapid, large-scale data acquisition with minimal disturbance to sensitive environments.
These findings underscore the importance of integrated methodological approaches for effective long-term monitoring in natural forest ecosystems.
References
[1] P. J. Verkerk, P. Delacote, E. Hurmekoski, J. Kunttu, R. Matthews, R. Mäkipää, et al., “Forest-based climate change mitigation and adaptation in Europe,” European Forest Institute, From Science to Policy, vol. 14, 2022, doi: https://doi.org/10.36333/fs14
[2] F. M. Sabatini, W. S. Keaton, M. Lindner, M. Svoboda, P. J. Verkerk, J. Bauhus, et al., “Protection gaps and restoration opportunities for primary forests in Europe,” Diversity and Distributions, vol. 26, no. 12, pp. 1646–1662, 2020, doi: https://doi.org/10.1111/ddi.13158
[3] H. B. Smith, N. E. Vaughan, and J. Forster, “Long-term national climate strategies bet on forests and soils to reach net-zero,” Commun Earth Environ, vol. 3, no. 305, 12 p., 2022, doi: https://doi.org/10.1038/s43247-022-00636-x
[4] L. Wang, F. Wei, T. Tagesson, Z. Fang, and J.-C. Svenning, “Transforming forest management through rewilding: enhancing biodiversity, resilience, and biosphere sustainability under global change,” One Earth, vol. 8, no. 3, p. 101195, 2025, doi: https://doi.org/10.1016/j.oneear.2025.101195
[5] European Commission, “Communication from the Commission to the European Parliament, the Council, The European Economic and Social Committee and the Committee of the Regions,” in EU Biodiversity Strategy for 2030 Bringing nature back into our lives, 2020, available: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:52020DC0380
[6] B. Law and W. Moomaw, “The best carbon capture technology? Leaving forests alone,” Trellis Group, Available: https://www.greenbiz.com/article/best-carbon-capture-technology-leaving-forests-alone
[7] W. R. Moomaw, S. A. Masino, and E. K. Faison, “Intact forests in the United States: proforestation mitigates climate change and serves the greatest good,” Front. For. Glob. Change, vol. 2, no. 27, 2019, doi: https://doi.org/10.3389/ffgc.2019.00027
[8] G. Winkel et al., “Governing Europe’s forests for multiple ecosystem services: opportunities, challenges, and policy options,” Forest Policy and Economics, vol. 145, p. 102849, 2022, doi: https://doi.org/doi: 10.1016/j.forpol.2022.102849
[9] IPCC, “Climate Change 2021: the physical science basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change,” Cambridge University Press, UK, 2021, available: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_Full_Report.pdf
[10] G. Grabherr, C. Peter, J. Enzenhofer, V. Pfefferkorn-Dellali, K. Pfeifer, E. Ritter, et al., “Ein Wald im Aufbruch: das Naturwaldreservat Rohrach (Vorarlberg, Österreich)” in Bristol-Schriftenreihe, no. 7. Teufen: Flück-Wirth, 224 p., ISBN 9783905209068, 1999
[11] H. Kirchmeir et al., “Digitale Bestanderfassung und Entwicklungsanalyse für das Naturwaldreservat Rohrach,” E.C.O. Institute of Ecology and TU Wien, Department of Geodesy and Geoinformation, Klagenfurt, Bericht im Auftrag der Nationalpark Gesäuse GmbH, Fachbereich Naturschutz und Naturraum, 2024
[12] K. Calders, J. Adams, J. Armstrong, H. Bartholomeus, S. Bauwens, L. P. Bentley, et al., “Terrestrial laser scanning in forest ecology: expanding the horizon,” Remote Sensing of Environment, vol. 251, p. 112102, 2020, doi: https://doi.org/10.1016/j.rse.2020.112102
[13] M. Demol, P. Wilkes, S. M. Krishna Moorthy, K. Calders, B. Gielen, et al., “Volumetric overestimation of small branches in 3D reconstructions of Fraxinus excelsior,” Silva Fenn., vol. 56, no. 1, 2022, doi: https://doi.org/10.14214/sf.10550
[14] F. Tupinambá-Simões, A. Pascual, J. Guerra-Hernández, C. Ordóñez, S. Barreiro, and F. Bravo, “Combining hand-held and drone-based lidar for forest carbon monitoring: insights from a Mediterranean mixed forest in central Portugal,” Eur J Forest Res, vol. 144, pp. 925-940, 2025, doi: https://doi.org/10.1007/s10342-025-01772-7
[15] I. T. Bueno, C. A. Silva, K. Anderson-Teixeira, L. Magee, C. Zheng, E. N. Broadbent, et al., “Aboveground biomass and tree mortality revealed through multi-scale LiDAR analysis,” Remote Sensing, vol. 17, no. 5, 2025, doi: https://doi.org/doi: 10.3390/rs17050796
[16] C. Xu, M. Förster, P. Beckschäfer, U. Talkner, C. Klinck, and B. Kleinschmit, “Modeling European beech defoliation at a regional scale gradient in Germany from northern lowlands to central uplands using geo-ecological parameters, Sentinel-2 and National Forest Condition Survey data,” Forest Ecology and Management, vol. 576, p. 122383, 2025, doi: https://doi.org/doi: 10.1016/j.foreco.2024.122383
[17] Y. Wang, M. Lehtomäki, X. Liang, J. Pyörälä, A. Kukko, A. Jaakkola, et al., “Is field-measured tree height as reliable as believed – a comparison study of tree height estimates from field measurement, airborne laser scanning and terrestrial laser scanning in a boreal forest,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 147, pp. 132–145, doi: https://doi.org/10.1016/j.isprsjprs.2018.11.008
[18] C. E. Van Wagner, “The line intersect method in forest fuel sampling,” Forest Science, vol. 14, no. 1, pp. 20–26, 1968, doi: https://doi.org/doi: 10.1093/forestscience/14.1.20
[19] H. Vacik, A. Egger, G. Koch, and H. Kirchmeir, “Totholzerhebung im Rahmen der Hemerobiebewertung in Südtirols Wäldern,” Cbl. f. d. ges. Forstwesen, vol. 117, no. 2, pp. 115–132, 2000
[20] S. Fraver, M. J. Ducey, C. W. Woodall, A. W. D’Amato, A. M. Milo, and B. J. Palik, “Influence of transect length and downed woody debris abundance on precision of the line-intersect sampling method,” Forest Ecosystems, vol. 5, no. 1, 2018, doi: https://doi.org/doi: 10.1186/s40663-018-0156-9
[21] H. Kirchmeier and S. Mayrhofer, “Erhaltungszustand der Buchenwälder im Nationalpark - Unversehrtheit,” in Natürliche Buchenwälder des Nationalparks Kalkalpen, in Schriftenreihe Nationalpark Kalkalpen, vol. 16. , Molln, Austria, 2016, pp. 115-127, available: https://www.zobodat.at/pdf/NP-Kalkalpen-Schriftenreihe_16_0001-0159.pdf
[22] B. Commarmot, U.-B. Brändli, F. Hamor, and V. Lavnyy, “Inventory of the largest primeval beech forest in Europe. A Swiss-Ukrainian scientific adventure,” Swiss Federal Research Institute WSL, Birmensdorf, L’viv, 69 p., 2013, available: https://www.wsl.ch/de/publikationen/inventory-of-the-largest-primeval-beech-forest-in-europe/
[23] H. Luo, C. Wang, C. Wen, Z. Chen, D. Zai, Y. Yu, et al., “Semantic labeling of mobile LiDAR point clouds via active learning and higher order MRF,” IEEE Trans. Geosci. Remote Sensing, vol. 56, no. 7, pp. 3631–3644, 2018, doi: https://doi.org/10.1109/TGRS.2018.2802935
[24] X. Liang, V. Kankare, X. Yu, J. Hyyppä, and M. Holopainen, “Automated stem curve measurement using terrestrial laser scanning,” IEEE Trans. Geosci. Remote Sensing, vol. 52, no. 3, pp. 1739–1748, 2014, doi: https://doi.org/10.1109/TGRS.2013.2253783
[25] T. P. Pitkänen, P. Raumonen, X. Liang, M. Lehtomäki, and A. Kangas, “Improving TLS-based stem volume estimates by field measurements,” Computers and Electronics in Agriculture, vol. 180, p. 105882, 2021, doi: https://doi.org/10.1016/j.compag.2020.105882
[26] Y. Wang, J. Pyörälä, X. Liang, M. Lehtomäki, A. Kukko, X. Yu, et al., “In situ biomass estimation at tree and plot levels: what did data record and what did algorithms derive from terrestrial and aerial point clouds in boreal forest,” Remote Sensing of Environment, vol. 232, p. 111309, 2019, doi: https://doi.org/10.1016/j.rse.2019.111309
[27] K. Olschofsky, V. Mues, and M. Köhl, “Operational assessment of aboveground tree volume and biomass by terrestrial laser scanning,” Computers and Electronics in Agriculture, vol. 127, pp. 699–707, 2016, doi: https://doi.org/10.1016/j.compag.2016.07.030
[28] Y. Cao, J. G. C. Ball, D. A. Coomes, L. Steinmeier, N. Knapp, P. Wilkes, et al., “Benchmarking airborne laser scanning tree segmentation algorithms in broadleaf forests shows high accuracy only for canopy trees,” International Journal of Applied Earth Observation and Geoinformation, vol. 123, p. 103490, 2023, doi: https://doi.org/10.1016/j.jag.2023.103490
[29] M. Abegg, R. Bösch, D. Kükenbrink, and F. Morsdorf, “Tree volume estimation with terrestrial laser scanning — testing for bias in a 3D virtual environment,” Agricultural and Forest Meteorology, vol. 331, p. 109348, 2023, doi: https://doi.org/10.1016/j.agrformet.2023.109348
[30] N. Marchi, F. Pirotti, and E. Lingua, “Airborne and terrestrial laser scanning data for the assessment of standing and lying deadwood: current situation and new perspectives,” Remote Sensing, vol. 10, no. 9, p. 1356, 2018, doi: https://doi.org/10.3390/rs10091356
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Carinthia II / Part 3 - Carinthia Nature Tech

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.